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PREFACE

This report is the result of research based on the premise that

image processing systems can be made more effective if relevant

chara cteri stics of the human visual system (HVS) are an integral part

of their design. Few would take issue with thi s general statement;

however , prior image processing work has concentrated on the devel-

opment algorithms and hardware.  Few image processing researchers

have had the time or inclination to study the physiology or psychophys~

ical cha racteristics of the HVS. On the other hand , the physiologist

is seldom interested in th e practical applications of his work with

respect tc image processing. The diffi culty becomes readily apparent

when one attempts to find an applicable jou rnal to read. There is no

journal (to my knowledge) which span s all of the fields associated with

image processing. Thi s is not an atypical situation when one is inter-

ested in a multidisciplinary field such as image processing. Because of

this problem I have t r ied to include a layman ’s guide to the HVS with

appropriate references in the A ppendices. The interested reader is

encouraged to read the Appendices first.

I would also like to point out that the models developed and analyzed

in this report are by no means limited to bandwidth compression appli-

cations. The experimental applications were  limited to thi s area because

of current interests and time limitations.

Unfo rtunately, time limitations also lead to compromises, particu -.

larly in such an exciting field which offers  so many research paths.

Section VIII is an example. I consider the issue of image quality mea-

sures of paramount importance. However , the work that had to be

iii
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accomplished leading up to this topic did not leave enough time for

experimental work on thi s subject. The length y paradigms required

for valid psychovisual result s contributed to the problem. As  a result ,

Section VIII present s what I consider to be preliminary results. These

comments are not meant to cast doubt on the result s reported in Section

V~~ but rather to encourage the reader to put them in their proper

context .

1 am indebted to many for thei r assistance and encouragement. M y

original interests in the human visual system was kindled by Professor

Matthew Kabrisky at the Air  Force Institute of Technology. Many of the

achromatic model considerations came out of discussions with Professor

E. L. Hall. Dr. Werner  Frei provided many fruitful discussions on the

chromatic model. I would also like to thank Professor  Lloy d Welch for

“ reminding ’ me that chara cteristic functions are more than a fi gment

of a mathematicians imagination. Indeed , his help in this  area led

directly to the power spectrum equations which are  of fundamental im-

po rtance to the bandwidth compression applications discussed irs Sections

VI and VII. Most importantly, I wish to acknowledge the guidance and

assistance of Professor Ha r ry  C. Andrews throughout the past two years .

I am still amazed that he accepted the challenge of our association and

hope that it has been as rewarding for him as it has for me.

The tru e test of most image processing research is in the viewing.

To the extent that thi s work may appear successful, I am indebted to

Mr. Ray Schmidt and the rest of the Image Processing Laboratory staff:

Gary Edwards , John Hom er , Toyone Mayeda , David Nagai , Clay Olmstead ,

Patrick Stoliker , and James Tertocha. The ar twork was done by Doyle

iv

L. .~~~~~~~ - ..~~~~~~~~~ . t.±.~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .



Howland. Ed Kasanjian and Dave Peck assisted in software development

and Marilyn Chars, Amy Yiu and Eileen Jumak provided administrative

and secretarial services. The final manuscript was typed by Lucy Cbeu.ng.

Finally, I want to thank the U.S. Air  Force for providing me with the

opportunity to perform thi s work.
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SECTION 1

INTRODUCTION

This dissertation is conc erned with the processing of discret e,

sampled imagery, in particular , the coding and bandwidth compres-

sion of such data. The major thesis of this work is that the human

vieual system (HVS) has certain characteristics which , when quan-

tified , can be used to formulate mathematical models suitable for

analyzing and processing digital imagery. These models should

lead to a fidelity criterion for visual data which matches human

subjec tive evaluation of images. In addition , mor e efficien t coding

and bandwidth compression techniques should evolv e from such

models.

1. 1. Research Objec tives

The primary goal of this research in the above context is to

quantify these mod els and verif y their utility in coding and band-

width compression systems. The emphasis  her e is on the word

quantif y. Several researchers have recognized the importance . of

the characteristics of the HVS in implementing and evaluating image

processing systems Cii th ru 1151. This recognition is often limited

to an acknowled gement of the importance of one or two specificI



facets of the HVS accompanied by a heuristic argument supporting

the implementation of a par t icu lar  image process ing  techni que.

This type of approach (which could be called a top down approach)

assumes one knows a priori  which cha rac t e ri s t i c s  of the HVS are

relevant to the task at hand. Unfor tuna te ly ,  the HVS is a complex

nonlinea r system with in ter re la ted  trai ts .  As  shown in Ii], a

simplifying assumption with regard to the nonlineari ty alters the

character is t ics  of the system and fails to revcal important contrast

properties . To take advantage of the entire system it is more

reasonable to study or model the HVS with a bottom up approach.

After  analyzing the effects of the entire system, the r~od el may be

reduced to one appropr ia te  for  a specific task. This la t ter

approach will be used during the present inv estigation.

1. 2. Organizat ion of the Disser ta t ion

In the next section we will develop a model for  the human

visual  system. First  a biological mod el based on physiological

and psychophysical proper t ies  of the HVS is presented. A

mathematical homologue -- which can be readily analyzed — will

th en be used to quantif y the biological model.

In Section III the character iza t ion  of visual images will be

presented. The s ta t is t ical  propert ies  will be developed in con-

sonanc e with the model generated in Section II. The spectral  
(or2
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color) content of images will be discussed in detail with particular

emphasis on color coordinate conversions.

Section IV contains a brief survey of bandwidth compression

and image coding, including so called psychovisual coders. The

emphasis will be on rate  distortion theory and its application to

transform coding. The basic assumptions which are  necessary  to

find a solution to the set of parametric  equations , which are  the

heart of rate distortion theory . ar e  presented and discussed .

The results of Sections 11 thru IV are combined with some

experimental results in Section V~ ~t is show n that the mathemati-

cal models derived in Section II a re  consistent with the measured

statistical character is t ics  of images. Fur thermore, when a statis-

tical analysis of the model is carr ied out , with a standard image

representation as an input , the output of the complete HVS model

is statistically compatible with the assumptions of ra te  distort ion

theory. This latter point c annot be overemphasized . Several

assumptions are  made to obtain solutions to the rate  dis tor t ion

theory equations which are  seldom met for “ raw” images. Images

which are  pr eprocessed by the HVS model satisf y all of these as-

sumptions except that of sta t ionar i ty .

Section V is followed by two sections which contain  the resul ts

of several coding experiments.  The achromatic (black and white)

experiments are  reported in Section VI and the color results  are

~

. 
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contained in Section Vii.

In Section VII a new image quality measure  is presented.  This

measure evolved f rom the HVS model and is a “ subjec t iv& ’  mean

square error fidel i ty criterion. The applicabil i ty of this cri terion

to rate distortion theory and image evaluation will be discussed and

some experimental resu l t s  indicating the utility of this measure  a r e

presented.

Finally, Section IX contains a review of the major f ind ings  of

this research and a discussion of possible app lications . Several

areas for continued r e sea r ch  a re  point ed out.

ii
I
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SECTIO N II

HUMA N VISUA L SYSTEM MODELS

In the past two or three decades visual system mod eling has

come into vogue. There are  several reasons for this , not the least

of which is the rec ent availability of large amounts of physiological

and psychophysical data. Technological advances, in both labora-

tory instrumentation and communication of the spoken and wri t ten

word , are  pr ime factors  in this “information explosion” no doubt.

Indeed , the vast amount of information presently available has taxed

the imaginations of the “model builders ” in some cases. However ,

the l iterature is replete with mod els of the HVS and just  lik e the

proverbial bus , wait a while, the one you want will come along .

A nother reason for this age of modeling is the advent of com-

puterized image processing and analysis. Prior to this time vision

modeling was done primarily to explain and understand the inter -

workings of the system with little practical app lication. The biolo-

gical models which are  being conjectured today are  quite often

quantified and t ransformed into mathematical mod els which become

Integrated parts of complex software and/or  hardware systems (in

our case , bandwidth compression and coding systems).  We will

now formalize our biological model.

5 
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2. 1. Biological Model

We begin by indicat ing all of the areas which our model will

not cover including any assumptions which wilt be made in devel-

oping the model. The model is for  p rocess ing  sing le f r a m e  color

imagery, therefore  temporal  aspects will not be considered. In

addition , we will assume the images wilt be viewed with an illumi-

nant of 5500°K at intensity level s which assure  photop ic (cones only)

vision. The viewing distance to image size rat io will be such that

we subtend a 20 field and henc e, we are considering foveal vis ion

only. Fu r the rmore , no considerat ion will be g iven to s tereoscop ic ,

depth , or dispari ty  effects.  In short , our mod el will assume mo-

nocular , color , sing l e - f r ame, photopic , foveal  vision.  In addit ion ,

we will assume the ocular  media and the re t ina l  mosaic to be spa-

tially isotropic and homogeneous (which is a reasonable  a s sumpt ion

for the fovea 116 , pp. 47 -50]) .  ‘~ The biological  model which follows

* Perhaps a comment  on the isotrop ic assumpt ion  is in o rder .
As pointed out in Sect ion B. 3 , the sensi t iv i t y of the v i sua l  sys tem
to cont ras t  g r a t i n g s  varies  with angula r  o r i en t a t ion  of the g r a t i n g s .
The response to vertical and hor izon ta l  g r a t i n g s  is  the  same, but

sensi t ivi ty d e c r e a s e s  for  rotations less than 90 degrees . The mini-
mum sens i t iv i ty  occurs  at 45 degrees ro ta t ion  and at this  point the
response of the system to a 30 cyc le s/ degree  g r a t i n g  is 3dB below
that at zero  degrees  rotation. The decrease  in s ens i t i v i t y  is less
for spatial f requencies  below 30 cyc l e s /deg ree .  Thus , the d e s c r i b i n g
function variation with rotation is minimal. One may question this

conclusion s ince  we obviousl y do not “ see ” as well  upside down as
we do upside  r ig ht.  The d i f f e r e n c e  is that  “ see ing  involves  cogni-
tion and the  hi gher  level mechanisms  which a r e  the p r e c u r s o r s  of
cognition are not ro ta t ional ly  invar ian t .  Sinc e we a r e  model ing  onl y
the preprocessor functions , the isotropic assumption is reasonable.
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from these assumptions is shown in block diagram form in

Figure 1.

The ocular media is represented by a single block since we

are assuming spectral and spatial invarianc e within the media.

This is a valid assumption for small off axis displacement s (which

is the case for Loveal vision). The major problem with this as-

sumption is that the chromatic aber ra t ion  in the blue region is

significant. Since the system is essentially linear at this point we

have chosen to includ e the result~ nt loss of resolution in this spec-

tral region with that due to blue cone spacing in the next stage.

The ocular media block is followed by th ree  blocks represen-

ting the three types of cones. Since we are  modeling photopic

foveal vision no considerat ion is given to the rod system. Each

photoreceptor block r epresents a spectral  and spatial funct ion.

The spectral functions are due to the pigments of the cones. The

low-pass spatial effects are  a result  of the cone size and spacing

(the retinal mosaic dimensions) .  A f t e r  the photopigrnent  of a cone

absorbs li ght several chemical changes occur which eventually lead

to electrical spike activity in the ganglion axons . At this point the

neuronal signals are  a nonlinear function of the visual stimulus.

The actual site at which the nonlineari ty  occurs  in the human ret ina

is not known; however , there  is evidence that it is af ter  the recep-

tors and prior to the gang lion cells 117, p. 251 1. Jarnesori has

L - ~~~~~~~~~
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Figure 1. Block Diagram of the Biological  Model
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argued that if the receptors  are  l inear  and linear summat ions  occur

before the nonl inear i ty ,  then the t r ichr omat ic  and opponent color

theories of vision a re  compatible 118, pp. 39 1-397] .  Ind eed , phy-

siological r e co rd ings  f r o m  the re t inas  of several  species indicate

the horizontal  cells may be the site of spectral  summation which

produces the luminanc e signal and the ch romat ic i ty  signals a re

generated in the outer plexiform layer  119, pp. 199-200 1. In addi-

tion , r ecord ings  f rom the inner nuclear  layer indica te  a nonl inear

t r ans fo rma t ion  has occured.  The biological model of the r e t ina  is

completed by the  neural  in te rac t ion  (NI) blocks which r e p r e s e n t  the

rich interconnectivity within the ret ina.

The ganglion cell axons form the optic nerve which carries

the output signals of the ret ina to the la teral  genicula te  bodies

(LGB).  The process ing  which occurs  at this point is still a mat ter

of debate (see Section A. 3). Neurolog ical recordings in primates

have revealed a response organizat ion at this level. The LGB

blocks in Figure 1 represent  this organiza t ion  with four  opponent

cell and two non-opponent cell s t ruc tures .

From the lateral  g eniculates the three  pai rs  of outputs go

direct ly to the visual cortex , in par t icular , area 17 of the s t r ia te

cortex. This last block in the diagram represen t s  the simple and

complex ce lls whi ch hav e been invest igated pr imar i ly by Hubel and

Wiesel (see Section A. 4) . The cells a re  located in area 17 and 18

9 
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of the cortex.  The cha rac te r i s t i c s  of these cells suggest  hi gher

cortical processes a r e  involv ed and at this point the t rans i tion

between the “ pr eprocessor elements ’ and the func tiona l  p rocess ing

which includes cognit ion and percept ion becomes prominent .  Given

the biolog ical model of F igure  1 we will now develop a concise

mathematical  mod el.

2. 2. Mathematical  Model

The mathematical  homologue of F igure  1 is shown in Fi gu re

2. The ocular media is represented by an ideal low-pass f i l t e r

which is invariant over the spectral range  of the input signal ,

f (r , e, X).  Fur thermor e, the system is assumed isotropic , t h e r e f o r e

the line spread funct ion (LSF) is rotat ionally invar iant .  The LSF

for a 3mm pupil has been shown to be approximately exp(- . 7r)

120). This formulat ion also compares favorably with the data of

Campbell and Gubisch (see Section B. 1).

The spectral  sensit ivi t ies of the th ree  cones can be quantified

by the curves shown in Figure B. 8. Note that these curves includ e

the effects  of the ocular media which is consistent  with the struc-

ture of our model. The spatial charac te r i s t i cs  of the red and green

channels at this point have been shown to be effectively that of the

ocular medi~a henc e, they r equ i r e  no f u r t h e r  modi f ica t ion .  The

~1ue channel however , has been shown to have a cont ras t  sens i t ivi ty

10
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which peaks at onl y 2 cy c l e s / d e g r e e  (see  Section B. 7). The in-

creased hi gh f r equency  loss of the blue channel is due to the sca r -

city of blue cones and can be represented by an ideal low-pass

f i l te r  with a cutoff f r equency  of 2 cyc l e s/deg ree  and a slope of

-6dB/octave.

The f i r s t  set of neural  inte rconnections  and the nonlinear i ty

of F igure  1 are  due to the linear spectral  summat ions  as pro-

posed by Jameson [18, p. 392] and are  of the fo r m

V~ = f1[E~~
(a

ii~~ 
+ a 12~~ + aj3y~)]

= f
2[~~~

(a 2i~~ 
- a22~~ + a23Y~)]

V = 

~~~~~~~~~~~~ 
+ a32 3~ 

+ a
33

y
~ )] (1)

The nonlinear functions f1, f2, and f 3 will be a s sumed  loga ri t hmic .

The t
>,

, B >, . and y
~ 

correspond to the blue , green , and red cone

spectral sensit ivit ies.  The linear port ion of equat ion (1) may

be wr i t ten  in matrix  fo rm

V 1 a 11 a 12 a 13
V 2 = a2 1 -a 22 a23
V

3 -a 31 a 32 a33 (2)

This formulat ion is similar to the fi r ~it st age  of Fre i ’ s color model

[21 , p. 116] and it sat i s f ies  Grassmann ’ s laws of color mix ture

12
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(Z2, p. 233]. In addition, V
1 

1. interpreted as luminanc e lik e, V 2
is redness for positive values and greenness for negative ones , and

V3 is yellowness-bl~ enese. Since V
1 

is luminance this formulation

satisfies Abney ’s law of luminanc e addition [ 23, p. 370]. The

weighting factors , a ... , are depend ent upon the set of functions

chosen to represent  the cone distributions. If the Konig dis tribu-

tions are used for the receptor sensitivities , then equation (2)

becomes 1l8 ,p. 395}

V 1 0.0 .15 .85

V 2 = .37 -2 . 23 1.66

V 3 -.71 .06  .34 (3)

Equation (3) is represented by T in the mathematical model of

Figure 2 .

The last block of the retina model shown in F igure  1 repre-

sent s spectral and spatial character ist ics . The spectral portion

accounts for  the opponent color t ra i t s  of the system. Cornsweet

has shown that a logarithmic d i f ference  operation can produc e chro-

matic signals which are  compatible with human hue perception [17 ,

p. 2481. In part icular , hue perception is relatively invariant to

intensity changes. This operation is performed by the linear adders

as shown in Figure  2. Multiplicative constants have been intro-

duced at this point to adjust the color balance so that an incremental

13
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change in the chron-iinanc e signals results in an equivalent hue shift .

The last block in the mathematical model is the high-pass

fi l ters which provide the low-frequency roll-off  of the HVS cont ras t

sensitivity curves .  These f i l ters  have been shown to be of the

form [1, p. l 66}

-4 2
H(w) = 

10 
2 

(4)
4 x l O  + . 8w

The actual location of the d i f fe renc ing  points and the f i l t e r s  has not

been established . Indeed , as noted in Section B . ? , the p resence  of

the hig h-pass f i l t e rs  in the chrominanc e channels  is still  being de-

bated . The conf igura t ion  for  the luminance  channel  is well esta-

blished however , and the last f i l te r ing operation probabl y occurs  at

the re t ina  level. The signal L is fed to the LGB . In the case  of

c 1 and c 2 (if the f i l te r ing  takes place),  there  is evidenc e that the

filtering is under the control of more central mechanisms (cortical

control) .  These f i l t e r s  may actually be located in the s t r i a t e

cortex. The inputs to chrominance f i l te rs  may be derived in the

LGB ’s, sinc e there  is some indication the differencing networks

are  located the re  [24] . In any case , the sequenc e as shown is

probably co r rec t .

The mathematical  model as shown in F i g u r e  2 appears  to

fall short  of the model in F igure  1. Fi gu re  2 shows only

14 
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three output variables , luminance and two chrominances .  This is

not a defe ct sinc e the complements of these signals can be derived

quite easily. Of more concern might be the nonexistenc e of the

simple c ell and complex cell behavior exhibited in the cortical area.

These effects have not been included since they are , again , consi-

dered to be under higher order control. Therefore, they do not fit

the preprocessor  definit ion of our model. Indeed , there  is much

evidenc e indicating the responses at this level are  modified by

heredity , environment , cul tural  background , and conscious effort  on

the part  of the viewer 125].

We would like to add however , that the eventual use of t , c 1,

and c 2 will be in the spatial f r equency  domain , i. e. ,  we will work

with the two-dimensional Fourier  t ransforms of I , c 1 , and c 2 .

Some authors have argued that the cort ical  a reas  of the visual sys-

tem are performing such a t ransformat ion  (see  Section A .4).  In

fact , the simple and complex c ell behavior can be e - ..:iained using

such a theory.  As a result , several  “Four ier  Models ” r f  vision

have appeared in the past 10 years .  Unfortunately,  mat te r s  a re  not

so simple as to validate completely such a simplistic viewpoint.

Although the Fourier  Model s explain many nonintui t ive visual pheno-

mena and are consistent with a wealth of psychovisual data , they

are considered to be “ an outlandish notion ” by some authors 126 ,

pp. 210-2 14]. For other reasons , which will become apparent later ,

15
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we will use the Fourier transform domain; and, because it appears

to be the domain of the brain in many respects , we shall r e fe r  to

the Fourier t r ans forms  of L, c
1
, and c

2 
as th e “per ceptual space.”

I
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SECTION Iii

CHARACTERIZATION OF IMAGERY

In this section we will present a mathematical characteri-

zation of images which will be used throughout this dissertation.

The basic ground work in image sampling, spatial and spectral

decompositions and t ransformat ions, and statistical anal ysis will

be developed. We will begin with the continuous image.

3. 1. Continuous Representation

Let J (x , y, t, X) be the intensity of an image source defined

at spatial coordinat es (x, y), at time t, and of wavelength A .

J (x, y, t, A) is a real and positive function .  For the “ s t i l l - image”

case, the intensity is t ime invariant and we may write  J (x , y, A).

The spectral dependence of the image may be eliminated by

integrating the product of J(x ,y ,  A ) and a luminous efficiency

function. Thus, for the achromatic case

J ( x ,y) = 

~~~~~ 
V
~
(X) dA (5)

where V
t
(X) is the achromatic spectral response of the human

visual system.

L. . ~~~~~~~~~~ .

- 
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The color representation of an image is usually accomplished

by a set of tristimulus values. The luminous efficiency function

in this case is defined over three overlapping spectral regions.

The three image representations are defined by

~~(x , y) f J ( x ,y , A) V~~(X)  dA (6)

4(x, y) = f 
J(x, y, A) V

4 
(A)  dA (7)

5(x,y) = J J ( x , y , A)  V
e

(X) dA (8)

In this particula- tristimulus space, which is commonly referred

to as the RGB-space, th e peak r espons es of V~ (A), V4 (A), and

V
6

(X) fall at 600nrrt , 53Onrn and 440nm, respect ively (see F igure

3). Thus , the red luminousity function peaks between pure  green

(53Onrn ) and pure red (650nm),  in the yellow region.  The green

function peak s at mid-green  and the blue funct ion peaks in the

violet region. The label RGB-space can be misleading if one is

not cognizant of the t rue  spectral charac ter i s t ics  of the defining

curves.

There are  several color coordinate systems cur ren t ly  in use

in image processing [ 27 , Chapter 31. Each of thes e systems can

be defined by a set of luminosity functions , as in the RGB case , or

18
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by coordinate conversion functions which convert  the ROB luminosi ty

functions to the desired space . We will discus s several  of these

coordinate systems and conversion to and f rom them in more

detail later.

3. 2. Discrete  Represen ta t ion

In the previous section the continuous image representa tion

was defined as J (x ,y,  t , A) ,  In this  representat ion x and y a re

defined over all space , i. e., x and y range f rom -~~~ to +~~ . In

addition , t ime and wavelength also have this  infinit e range.  ~~he

f i rs t  step to be taken in discre t iz ing our representa t ion  is to l imit
31

these bounds . Sinc e the pr imary concern in this d isser ta t ion  is

“ still” or “ single f r a m e” imagery we will el iminate the t ime

dependence completely . The wavelength range can be r educed to

that range of the spectrum over which the visual system respond s .

For now, we will simply limit the spatial range  by conf in ing  x and

y to the range -L to L.

Sinc e we will be processing the images with a digital com-

puter , they must be limited to an array of discret e values . This

is accomplished by samp ling the continuous intensity over the

limited ranges we have defined. These sampled values are  then

quantized with a number of levels compatible  with the accuracy

desired and di gital word size available.  For the imagery used in

20
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the experimental work of this research 256 level quantizat ion was used.

In addition , all images were sampled over a 5 l 2 x  512 linear grid.

Wher e 2 56x  256 size images are  specified in this d isser ta t ion , said

images were obtained by averaging a 5 12 x  512 p ic ture  with a 2 x  2 pic-

tur e element (pixel) square.  We will represent  discretized imagery by

a two-dimensional matr ix  denoted by a bracketed let ter , henc e

~ 
f
l , 2 ~l , N

f
[~1 = 

2, 1

~N , l ~N , 2 ~N , N .

is an N x  N d iscre t ized  image.

3. 3. Spatial Decomposi t ion of D i sc re t e  Images

Assume  the d iscre te  representat ion of an image as d efined

by equation (9). We may write a separabl e linear trans-

formation on the image as

[F] = [u]
t

[f] [v] (10)

where [Fl is called the unitary t r ans fo rm domain of the imag e,

fu )  and fv ]  a re  unitary operators , and the superscrip t  t denotes

matrix transposit ion [ 28, p. 30]. 1.1 [uJ and {v] a re  uni ta ry ,  then

by d efinition

21
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- l[u } = [ U I

and

-l
[v] [v J (11)

where ‘~ denotes complex conjugation.  For the case of a real

unitary matrix [uJ ,

— l  t
[ul = [u] (12)

and [u] is called an orthogonal mat r ix. The inverse  of equation

(10) becomes

[1] = [u] [F] [vl
t (13)

Equation (10) is commonly refer red  to as an orthogonal  de-

composition of [f] . Sinc e the decomposition is over the two -

dimensional spatial representa t ion  of the image in this  case , it

may also be re fe r red  to as a spatial t r ans format ion .  Such trans-

formations are  useful  for image representa t ion  to the extent that

they “ average” the energy or information contained in the original  J

r epresentation into a more “compact” space. Hence , cer ta in

elements of the t ransformed spac e may be set to zero with a

minimal loss of informat ion.  This a t t r ibu te  of orthogonal  trans-

formations is useful  in bandwidth compress ion  and coding appli-

cations. There  are  an in f in i te  number  of poss ib le  or thogonal

•
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systems; how ever , only a few have been formally d efined and used

in image processing.  The most commonly used t r ans fo rms  are:

Fourier , Haar , Hadamard/Waish , Slant , Cosine , Sine, and

Karhunen-Loeve 1 27 , Chapter 10], [28 , pp. 33-38], and [ 29,

Chapter 6].

The optimum stat is t ical  t r ans form for minimizing the mean

square error cri ter ion between the original and a reconstructed

image (formed with a reduc ed number of t r ans fo rm coeff ic ients)  is

the Karhun en-Loeve t ransform (KLT) [ 29 , p. 123] . This t r ans fo rm

is composed of eigenvec tors  of the corre la t ion matr ix  of the or ig ina l

imag e, or class of images . There are  two problems associa ted

with this t r ans fo rm.  The f i r s t  problem is the l a rge  number  of

computations which must be performed to: (1)  determine a corre-

lation matrix , (2)  diagonalize it to obtain eigenvectors , and (3)

perform the actual t ransformat ion.  The second problem is that

mean square er ror  is not necessar i ly a valid c r i t e rion  for  imagery.

The d iscre te  Fourier  transf~ rm kDFT ? is defined as

[F] = [A] [fJ [A] (14)

where

23
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[A) = 
1 

0 3 (15)
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w
0 

w
N

~~ ... w ”~~
U
2

For this representat ion

w exp [- 
2 i t i]  (16)

where N is the number of samp les in each d i rec t ion  and i =

Note that [A] is symmetric and there fore  equation (14) follows

di r ec t ly f rom equation (10). Several f e a t u re s  make the DFT

appealing. First ly,  the t r a n s f o r m  can be implemented with a f a s t

computational al gori thm , the fast  Fourier  t r a n s fo r m  (FFT).  The

FFT requires  a number  of computations proportional to 2N 2
log 2 N

rather than ZN 3 
as for the Karhunen-Loeve t r ans fo rm (assuming

an NxN image) [ 30, p. 49]. A second favorable  t r a i t  of the DFT

is that under the proper s ta t is t ical  assumptions , as N grows , the

DFT approaches the optimum decomposition [ib id] . Another  some-

what mundane reason for represent ing  images in this fo rm is the

compatibil i ty with l inear sys tems analysis  and the d i r ect  analogy

24
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between the t ime-f r equency and space-spatial fr equency domains.

A problem which is often cited for  not using the DFT is that the

kernel -- defined by equation (16) — is compl ex.

The di8cret e cosine t r ans fo rm (DCT) obviates the complex

problem. This t r ans fo rm is defined on the reals only and is given

by

= x(n)

G (k) = *Lx (n )  coS
[ 

( 2 n + 1) k n ]  
, k = l , 2 , . . . , ( N - l )  (17)

wher e G (k) is the kth DCT coefficient C31]~ A hrn ed has shownx

the DCT is closer to the optimum (KLT)  than the FFT for  the

statistical assumptions of a f i r s t  order Markov system with cor-

relation equal to . 9 [ibid]. Jam has shown this to be t rue  for

correlations grea ter  than . 5; however , for cor re la t ions  less than

5 other sinusoidal t rans forms  pe r fo rm better than the DCT [321.

3.4. Spectral Decomposition of Discre te  Images

In Section 3. 1 we briefly touched on the spectral  decomposition

of continuous images. As  pointed out then , several color-coordinate

systems may be defined. These “ rotations” of the color axes can

25 
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produc e various energy packing and/or decorr elation prop erti es

which make one system more appropriate  than another for  a

specific task. For discrete images, conversion between linear

systems involves a single matr ix multiplication

CO 1 k 11 k 12 k 13 Cl 1

CO
2 = k 2 1 k 22 k 23 CI 2 

( 18)

CO3 k 31 k 32 k33 Cl 3

where CI. and CO . are  color input and color output t r i s t imulus

values. Many conversion matr ices  are defined in terms of the

ROB functions shown in Figure  4. One such conversion which

has found wide appl icabi l i ty  is the National Televis ion Sys tems

Committee (NTSC) receiver primary color coordinate system.

The three coordinates of this system are  r e fe r red  to as Y , I , and

Q; hence, the system is sometimes called the YIQ system. The

conversion is defined by

Y . 299 . 587 .114 R

I = . 596 - . 273 - .322  (19)

Q .212 -.522 .315 B

The Y signal represents  luminance and the I and Q are  chrorninance

signals which are  linear functions of R-Y and B-Y respectively.

As can be seen f rom Figure 4, the Commission In terna t ionale
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de l’Eclairag e (CIE) standard observer curves have some negative

areas. Thus , some tr ist imulus  values are negat ive which is a

nonrealizabl e situation. To eliminat e this problem, the XYZ pri-

mary system was developed by the CIE. The color matching

functions of this system are shown in F igure  5. This set of

curves can be produc ed f rom those of Figure 4 by the conversion

X .607 .174 .201 R

Y = .299 .587 .114 G (20)

Z 0.0 .066 1.117 B

Note that Y in this system is equivalent to Y in. the NTSC YIQ

system.

In order to evaluate the effectiveness of a color coordinate

system, one may devise a color-order  system which specifies all

object colors within the limited domain under consideration. There

are three general categories these systems may be grouped under:

additive color , subtractive color , and perceptual color. For

obvious reasons , we are  conc erned with the la t ter .  One system

of this group has gained wide popularity among researchers, the

Munsell Color System [ 22, p. 476 1. The Munsell Book of Color

contains color patches arranged in equal visual spacings of hue ,

luminanc e, and saturation. This arrangement yields color solids

with loc i of constant hue and saturation on a su r face  of constant
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luminance. These loci fo rm a polar coordinate system.

Given that a Euclidean property of color perception Is

approximately valid , a chromaticity scale based on this polar

coordinate system can be converted to a uniform scale. Analytic

expressions that t r ans form the CIE standard observer tr i stj mulus

values to three new variables which defin e a “distorted” space can

then be defined. In this space the chromatic  di f ference between

any two samples in an equi-luminance plane corresponds to the

same distanc e separation of their representa t ion points . Thus , the

vector distance between two colors correspond s to the i r  perceived

difference.  With the Munsell system as a basis , a number of

attempts at acceptable -- but simpl e — analytic t r ans fo rmat ions  have

been made [22 , p. 454]. The more recently developed cube-root

coordinate system [33] has received much at tention because  of its

simplicity and good approximation to the spacing provided by the

Munsell system.

The ROB system can be represented in a chromatici ty

diagram as shown in Figure 6. The outer horseshoe shaped

curve, the chromaticity curve, is the locus of wavelength points for

the gamut of saturat ed hues in the system. Overlayed on this

curve is a set of MacAdam elli pses which represent  the regions

within which chrorninanc e can be var ied without percept ible  color

shifts.  The actual size of these ellipses has been exaggerated.

29
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The important  point is their  size varies over the range of spectra

shown. The blue region , for example , is much more  sensi tive to

shifts than the green region. An ideal perceptual  cclor-coordj nate

system would map these areas into c i rcles  of equal radii.

The cube-root or Lab color coordinat e system was developed

with this idea in mind [ 33]. In addition, the system is based on

simple conversion formulas .  In terms of ROB , the system is

defined as

L = 25.29G’’3 - 18.38

a = 106.0 (R’”3 - c1
~
’3
) (21)

b = 42. 34(0 1/ 3 - B1”3 )

where R =  1. 02X , 0 = Y , and B = . 847Z { 33 ]. The set of equations

can be r ewri t t en as

1/ 3
L = 25 (too ..

~
!_ ) - 16

a = 107.72 [(ioo X )
h/ 3 

- (ioo Y )
1/3] 

(22)

b = 43.08 [(ioo )

1/3 
- (ioo 

z~~~h/3 ]

where X
0
, Y0, and Z

0 are the tristimulus values for the r e f e r en c e

white. Several  f acto r s  should be noticed. F i r s t  of all , this

30 
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system provides a set of coordinates in close agreement  with the

Munsell system. The three  coordinates L, a , and b correspond to

lightness , r edness -g reenness, and yellowness-blueness (just  as our

color model requi res) .  In addition , the formula t ion  contains a

nonlinearity,  and in par t icular , one which has been proposed as

the “correct” nonlinearity for the HVS [ 34, p. 15) . Thus , the

Lab space has strong physiological  and psychophysica l  support .

Another color system which is based on the visual system is

the retinal cone color system [ 27]. This system is based on

functions for normal , deuteranopic and protanop ic vision which were

dev eloped by Judd [ 35]. The conversion is defined as

0.0 1.0 0.0 X

T 2 = -.460 1. 359 .101 Y

T3 
0.0 0.0 1.0 Z

. 299 . 587 .114 R

= .127  .724 . 175  0 (23)

0.0 .066 1.117 B

Note that T
1 

in this system is equivalent to Y in the XYZ and

YI Q systems and is luminance. T2 
and T

3 
can be seen to be

chrominance signal s which are  greenish and blueish respectively.

Frei has used this coordinate system in the development of a HVS

color model [36].
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The Frei color system can basically be represented by the

set of equations

= 21 .5  tn Y

g2 
= 41 L~~

[
~~ 46x + 1. 359Y + 1O1Z] (24)

g 3 = 6. 27 In

The similarity between this system and the Lab system is read ily

apparent. Fur thermore, this set of equations is consistent  with

the color model developed in Section II. Frei ’ s complete model

also contains spatial f i l te r s  in the last stage giving

g~ = g 1 ® h 1(x , y )

g~ = g 2 0 h 2(x , y )  (25)

g ’ g
3 0 h3(x,y)

where 0 denotes convolution. The f i l ter  functions used by Frei

wer e of the bandpa ss typ e ~3].

One last system which is also based on a model of the HVS

will be discussed , that due to Faugeras  [ 37]. Faugeras  developed

a matrix based on the un i form color scale convers ion  of Stiles

[ 37 , p. 103]. This matrix defined a cone absorption stage in his

color model and it is given by

~ 

~~~~~~~~~~~~~~~~ .~~~~~ 

- — 
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F
1 

.363 .610 .026 R

F2 = .125 .814 .062 G (26)

F3 
.001 .060 . 939 B

The three  signals A , c 1, and c 2 which correspond to luminanc e,

red-green, and yellow-blue , respectively are then given by

A = 13. 83 tn F 1 + 8. 34 In F 2 + .429 In F 3

F F 11
= 64 In~ j ~— J (27)

IF 1
c, = 10 In F3

This set of equations can be seen to be similar to those of the

Fr ei model , equation ( 24). The most important  d i f f e rence  is

between A and g 1. Recall that g 1 
derives its luminosity character

from the linear equation which defines Y. In the case of A , the

constants multiply ing each logarithmic function provide the correc t

mixture for an appr oximation to luminance.

3. 5. Some Statistical Character is t ics  of Discre te  Images

The mean value of a discrete image is a matrix of the form

[
~

] = E ([F]1 = [E fF ( x ,y ) ~~J (28)

where E(~~) denotes the expected value operator .  The correlat ion
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can be defined as

R(x 1 y 1 ;x 2 ,y 2) = E (F ( x 1,y 1) F*(x 2 , y 2 )) ( 29)

and similarly the convariance becomes

C(x 1,y 1 ;x 2 , y 2 ) = E[[F(x 1,y 1) -  E [F(x 1,y 1) ) ]

[F *(x 2 ,y 2 ) - E(F *(x 2 ,y 2 ) }])  ( 30)

If the image ar ray ,  F , comes from a wide sense stationary pro-

cess , the correlat ion function is a function of k = x 1 - x2 and I =

y 1-y 2 ,  thus

R(x 1,y 1 ;x 2 , y 2 ) = R(x 1-x 2 , y 1-y 2) R(k,L) ( 31)

and similarly for the covarianc e,

C(x 1,y 1 ;x 2 , y 2 ) = C(x 1-x 2 , y 1- y 2 ) = C(k , I) ( 32)

The two matr ices  will be of block Toep liz form under these

conditions [27]. When the correlation between the elements of

the array is separable in the x and y direction then the correlation

matrix can be expressed as a direct product of row and column

matrices. U we consider the special case of a Markov process

with the adjac ent pixel correla tion equal to o we get the covar ianc e

matrix

34 
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2 N-I1 p p ... p

2[C R ) = aR 2 ( 3 3 )
p

N -l
p 1

where the subscript R denotes row statistic s and is the var iance

of pixels along a row. A gain , for the x and y separable case, the

covarianc e can be expressed as a direct product of the row and

column matr ices , CR 
and C .

The Markov process assumption is valid for  many types of

images. The computed correlat ion of adjacent pixels in the Kodak

GIRL picture are  plott ed in Figur e 7. The slope of this curve

is the o for a f i r s t  order Markov process and for this data 
~~ 

= . 96.

Habibi and Wintz  have reported p ’ s in the rang e . 78 to . 92 for

four data sets [ 38]. Note that the data points are  very close to

the straig ht line and since the ordinate in F igure  7 is logr i thmic

this indicates the data is Markov.

Onc e the stat ionary covar iance  function has been determined

the discrete power spectral  densi ty may be computed. The power

spectral density in this  case is the two-dimensional DFT of the

covariance func t ion , thus

35
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N - iN - i
S(u , v) = R(j, k) exp { .. ~~~~ ( J u + k v )

} 
( 34)

j=O k=0

wher e N is the number  of pixels in a line and number  of lines in

the image and m - .1T. The one-dimerisienal power spectral  densi ty

of the GIRL pictur e is shown in Figure 8.

A discret e image can be completely cha rac t e r i zed  s ta t i st ica l l y

by the probabil i ty den sity function (p df) of the image . The most

common pdf is the joint Gaussian which can be defined by f3 9,

p. 255]

= ( 2 ) ~~~~
2 I C l ~ exp j~~~(x~~~) [c} l (~~~~) t ) ( 3 5 )

where [C) is the covariance matrix and ~C { is its determinant ,

x is the data vector , and ~ is the mean vector . This density is

not an adequate model for  an unprocessed image since luminanc e is

a positive quan tity and the Gaussian variables a re  bi polar.  The

logarithmic funct ion converts  unipolar data to bipolar data and , as

shown in Section II, the HVS contains such a t ransformat ion .  If

we assume Gaussian statist ics after such a t r ans fo rma t ion  what

would be the pdf of the input? This question can be answered

quite simply by considering Fi gure  9 and app lying a fundamental

theorem discussed in Section 5. 2 of Papoulis [ 39, pp. 126-1271.
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if. Figure 9. Exponential Nonlinear System

Referring to Figur e 9, let x be a Gaussian process;

therefore,

2 2
= ~ ~~~~~~ 

/2a 
(36)

Now

y = g(x) e~
C ( 37)

or

x = I n y ( 38)

and

g ’ (x) = dx 
ex ( 39)

From Papoulis

f ( x )
= 

~g ’ (x~ j J 
( 40)

which becomes (after appropriate substitutions)

f ( • )  = 
1 

exp (-(In y u)
2/2o 2) (41)

oy 1 Zn

39
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where y 1 
� 0. This pdf is known as the lognormal dis t r ibut ion and

it has several interest ing proper t ies  [40]. Plots of this funct ion

for several values of ~ and a r e  shown in F igure  10.

A plot of the f i r s t  order h i s togram values obtained f rom the

GIRL picture  is shown in Figure  11. The s imi lar i ty  between

Figures 10 and 11 are  r eadily apparent.  If we plot the h i s togram

data on log-probabil i ty paper the curve  of Fi gu re  12 is obtained .

Straight lines on this type of plot indicate lognormal data and the

parameters I.i and a can be estimated f rom the curve  by

= Ln~~ (42)
50%

and

a In {.~ ( ~ 50% 
+ ~84% (4 3 )

~l6% 50%/

where 
~x% 

indicates the value at x% [40 , p. 32) .  The data points

are  essentially a s t ra i ght line over the 1% to 997o rang e which  in-

dicates the image is strong ly lognormal.  If the GIRL image is

processed by the logar i thmic  point nonl inear i ty  and the h i s togram

computed, the curves  of Fi gures  13 and 14 :an be obtained.

Figure 13 has the charac te r i s t i c  “bell” shape of the Gaussian

pdf. Since the abscissa  represen t s  equivalent normal  deviates and

the ordinate is linear , s traig ht l ines on F i g u r e  14 indicat e

Gaussian like behavior .  The slopes of the l ines a re  equal to the

40
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on Log-probability Coordinate System

42

-- _ -  —~~~—.---. __--_- _--. -- . _---—---- _---.-- ~~~ .- -—-— ._ - --——_ — — - - -..--— . - . _  —- - — - — . . - - —_ - - .— -_--—— - --.-——- --—-—--.‘-———- --_- . -_ _ --— —.- —



r - 
-. -

~~~~~~~~~

---

~~~~~~~~~~~~

‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . .

Figure 13. Firs t -order  Histogram of the Logarithm of GIR L
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varianc e of the underlying Gaussian processes. From Figure 14

we see there are  th ree  straight lines , two of which have equal

slopes (hence the same variance), symmetric about the 50% point

or mean. This indicates there  are  two underly ing Gaussian pro-

cesses of equal means in this image.  One process has a low

variance equal to the slope of the line passing through the 50%

point. The other has a higher varianc e equal to the slope of the

two outer segments of the plot. One may conj ecture  that the low

variance process is f rom the basic fo rm or “ gestal t”  of the image;

whereas , the hi gh var iance process is a result  of the ed ge infor-

mation and/or  noise. From this d iscuss ion  we see that the HVS

model helps satisf y the common assumption (which is unrea l i s t ic

for an unprocessed image) that imagery is Gaussian.

Let us now consider the entropy of the two pdfs we have

been discussing.  We will use the common def in i t ion  for d i f ferent ia l

entropy

H(x) = ~f
p(x) In p(x) dx ( 44)

where p(.) denotes the pdf. Shannon has shown for the Gaussian

case we get (41 ]

H(x) aiT~~ e (45 )
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where e is the base of natural logarithms. Consider the lognormal

distribution,

p(x) = 
1 exp ( - (Zn  x -~~) 2 /2a 2 ) (4 6)

The logarithm of this distribution is

In p(x) = -In (ax~T~~~) - 
( Z n x - ~A) 2 

( 47)

and the entropy becomes

H(x) = JPx)[Ln(ax~~~~ + 
(1~~~~~~) 2 

]dx ( 48)

where the lower limit of integration has been chang ed to 0 sinc e x

rang es f rom 0 to ~ fo r the lognorrnal pdf . Equation (48) can

be rewritt en as

H(x) = Z n  (a~~~~ )dx + Jp(x)  In (x) dx

+ f p ( x )  x~~~ dx ( 49)

But for any valid pd-f

dx = 1 (50)

Therefore ,

45
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H(x) = Zn (a~f ~~) +J p(x) In (x) dx

+~~~~~~J
p(x)(Inx-~~)

2 dx ( 51)
2a 0

Now let y = Zn x , which implies x e~ and hence , dx = e~ dy. Also ,

when x = 0, y = -~ and when x = 
~~~

, y = ~~~~ . Substi tut ing into equation

(4 6) gives

p(.) = 
1 

exp - 
( y - u )

2 
( 52)

2a 2

Making this substitution in equation (51) gives

2
H ( ’ )  = Ln (a~~~~~) 

~~f 
_ y exp dy
a 2rr ( Za

+ 1 J  iL~~~ ex~~
{
~ 

(y-~i)
2 

~ dy ( 53)
Za -~~~ a’.T~~ Zcy

The first integral is the mean and the second the variance of a

Gaussian pd-f; henc e,

H ( . )  Z n ( ~ .J~~~) + ~ + —~-~~a
2

2a

= Ln (a./ ~~~ ) + ~ ( 54)

Thus , for  a nonzero ~ we have an entropy change af ter  passing

46
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Figure 15. Logarithmic Nonlinear Syst em

through the nonlinearity which is equal to i, the mean of the output

Gaussian pdf.

Next we will consider the autocorrelation and power spectrum

for the system of Figure 15. The autocorrelat ion is (assuming

y is a Gaussian process)

_ _ t  - — —y1 y2 -~ (y-~..i) [C) (y-~.t)R
~

( r )  = E (x(t )  x( t + T ) )  = 11.. .1 
e e e 

N / 2  .
-~~~ (Zn ) id

( 55)

where N is the dimension of the system and is equal to two for

the following discussion. Also ,

—ty = (y 1 y 2 ) ( 56)

and

2 2a a p (i- )
[C) = ~“ ( 57)

2 2a ~~( r )  a

47 
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where Py( T)  is the normalized autocovar ianc e defined as

Qy
( T)  = E ( [y ( t )  -~ i][y ( t +T )  -~.iJ) 58)

Letting X1 
)1
2 -i = -iT , equation ( 55) can be rewri t ten  as

iX 1y iX y
R (’r ) = E ( e  ‘e 2 2)

~ iX y + i X y
= if e 

~~~~~~~~~ 
[C] 

~~~~~~ dy 1 dy 2 ( 59)
-~~~

The above equation is in the fo rm of a c h a r a c t e r i st i c  equation.

The charac te r i s t i c  func t ion  for  a two-dimensional  Gaussian of

nonzero mean is [ 39, p. 255]

~( X )  = 
~~X t

[C ] X j~~
t : 

( 60)

where X~~= (-~rT , _
~‘CT). Therefore, equation ( 59) reduces  to

Rx (T)  = 

~~~~ ) 
e
a 2

~~ 
+ P ~~( T ) J  + ~~~(T )  + u~~( t+ T) 

( 61)

where we have added the subscr i pt y to the means for clari ty .

Equation ( 61) gives the autocorrela t ion of x in t e rms  of the

statistics of y.

In general , the autocorre la tion  can be expressed in te rms of

the covar iance of a process as

48

-

~

- - . _

~ 

-~~~--.-- - - -,~~ 
±I±__.__. 

- - 



_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

R
~

( r )  = ~.t
2 

+ C (’r) = + C
~
Ox(~

) (62)

From equation (61) we have

~ 2 
2~ +a

2
[1+p ( i )1

R (i~) = 

~x + a p ( r )  e ~ y 
( 63)

Now
2

~.t
E(x) = 

~x = E(e’
~) = e ~ y 

( 64)

(the later equality follows sinc e y is Gaussian) which implies

22~.j +a2 y y
~x = e  (65)

Substituting this fo rm into equation ( ~3) gives

2a ~ (r)2 2 2 y y
+ ap (’r ) = e (66)

or
2 2

a a p (’r)
1 + —~ -p ( r )  = e ~ y ( 67)

Expanding the right side of this equation gives

2 k
ax 2 2k Py(1~)

1 + 
~~~~~~~ 

= 1 + a p ( ’ r ) + ~~ a~ k~ 
( 68)

k 2

Th e sum in equation ( 
68) represents the error if we use only

49
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the f i r s t  two terms of the expansion. The normalized covarianc e

- 2of any process will have an upper bound of 1 . The value for  a

is ‘~yp ical ly  . 5. Thus , the worst  case  expansion is on e~ and the

error  introduc ed by using the f i r s t  two t e rms  is less than 10%.

This is a very conservat ive  er ror  bound , par t icular ly s ince it

assumes the data a re  completely correlated.  Neg lecting the er ror

term gives

2

~ + 
~~~~~ ~~~~ 

= 1 + a
2 

p (T )  ( 69)
l.A

From equation ( 67) we could have approximated the logar i thm

Zn [1 + ~~~~~~
PX

(
T )]  

= a
2
p (T) (70)

Typical imag e data will g ive a —a- ratio of . 16. For the wors t
ix

case p (r)=l we get Z n ( l + . 1 6 ) = . 14842 which is within 8% of .16.

Thus , within experimental e r ror , we get the previous result

In + 4 (T
~~~ = a~ Q

y
(T) (71)

Now = p ( O )  = 1 for any valid covariance function; t he re fo re ,

2
ax 2

(72)2 y
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Substituting into equation (71) gives

2 2ay P x( 1 )  = a p ( T )  (73)

which implies that p~~
( 1)  = p ( r ) .  Thus , the output autocorr  elation

becomes

R ( T )  = 
2 

+ 
2 ( 74)

y y y x

By definition, the power spectrum of the y process is

S~ (~~) =
~~~ 

R
y

(~~) ~~~~~ dT ( 75)

therefore

S ( ~~) =f  [~
2

+a 2
~ ( T ) ]  e 3

~~ dT

= 2n~~
2 

ô( ~~~~) + a 2 J ~~~( T)  e 3
~~ dT ( 76)

This r elationship is of great  importanc e in rate distortion appli-

cations. Given an input aut ocorrelation , we can compute the output

power spectrum which can be used in the equations [ 42, p. 117]

= j!_ fm i n  [
~ . S(Lu )] d~ ( 

77)

and

R(D e ) = -~ _ _ f m a x  [o~ 1og(5
~~~)]dw ( 78)
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Thus , the rate  d is tor t ion  curve of a process  which has been passed

through a logari thmic nonl inear i ty  can be specified.  A detailed

discussion of ra te  distort ion theory and the implicat ions of the

result jus t  obtained is contained in the following section . To com-

plete the present  anal ysis  let us re tu rn  to the Markov assumption ,

= e ( 79)

Substituting this form into equation ( 76)  gives

S (w) = a 2J e~~ i T I  e 3
~~~ d~ + 2

2 6(u~)

2
- 2~~a

= 

2 ~
‘
2 + Zn~..t 6(J)) (80)

0. +U )

We have shown that if an image source is lognormal and

Markov, then after passing through a logarithm ic nonlinearity it

- will be Gaussian Markov with a power spectrum defined by equation

(80) . Fur the rmore, the entropy of the original source will be

changed by ~i , the mean of the resu l tan t  Gaussian p rocess .  The

importance of these resul ts  will be explored in Section V.
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SECTION IV

IMAGE CODIN G

The rapid growth in high speed , large s torage , computational

facilities in recent years  has made sophist icated dig ital image pro-

cessing a reality . The degree  of success  which can be achieved

was demonstrated world wide when pictures were  t ransmit ted to

earth f rom the moon and Mars.  Two of the major problems that

occur in projec ts  such as the A pollo moon miss ions  are  effect ive

data reduction and noise f ree  t ransmiss ion .

The f i rs t  problem ar ises  due to the bandwidth cons t ra in t s  that

exist on any practical  communications channel. A s tandard NTSC

television f r a m e  contains 525 scan lines of 525 pixels , or approxi-

mately z 18 data points. The human visual system can resolve

f rom 16 to 256 int ensity levels depending on subject matter , type

of quantizat ion , and viewing conditions. For the worst  case

8x 2
18 or 2 21 bits would be required to d efine a sing le mono-

chrome image. For fl icker f r e e  television, we need approximately

30 f rames  per second which gives a bit ra te  of 2 26 
b i t s / sec .  If

we consider color , another factor  of three  is r equired ; henc e,

b i t s/ sec  or 1o 8 b i t s/ s ec  would be the f inal  r equired rate.

The second problem , that of noise susceptibility , is equally
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important. If one can t r ans fo rm the imag e in such a way as to

make it less sen s i t ive to noise in the channel , then the signal to

noise racio is increased. This lead s to a lower power requirement

and a simpler channel code r -decode r  des ign , which r e su l t s  in a

lower cost system.

The transmission of images is not the only applicat ion for

image coding. Obviously , with such a la rge  number of bits per

image, storage (particularly high speed rapid access storage) be-

comes a problem. For example, a s ingle  f r a m e  of the color

22
image discus sed ear l ier  would r equire  approximate l y 2 32 -b i t

words of s to rage  (packed as four  8-bit by t e s / w o r d ) ,  or 4 x  io 6

words of core on a PDP-10 computer.

4. 1. The Coding Problem

In the preceding paragraphs the app l icabi l i ty  of image coding

was discus sed in general terms . We will now present  the basic

coding problem in more definitive terms. An image coding task

may be i l lus t ra t ed as shown in Figure  16. The scanner  may be

one of many types depending on the source of the or iginal  image

(the “ real world”)  and it will not be considered in detai l .  The

important  point is that  in most s i tuat ions the scanner  pe r fo rms  an

analog to dig ital convers ion .  Thus , X is an e s t ima te  (sampled and

quantized vers ion)  of the ori g inal object.  The source  encoder
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t ransforms X into a sequence of b inary  d ig i t s . The goal is to make

this t r ans fo rma t ion  opt imal  in t e r m s  of data r educ t ion  and image

fidelity.  The channel encoder codes the output of the source  in

such a way as to i n s u r e  the b i n a r y  sequences  can be rel iably re-

produc ed a f te r  passing throug h the  channel .  The channel can take

on many forms.  For example , it may be a s to rage  device (an

information channel)  or a t r a n s m i t t e r-  med ium- rece ive r  combina t ion

(a communication channel). The two decoders  shown in F igu re  16

are  obvious counterpar t s  of the coders.  The input to the display,

Y is the recons t ruc ted  X. The various blocks of F i g u r e  16 can

be grouped in several  ways.  We will consider  the  channe l  coder ,

the channel , and the channel decoder  to be a s ingle enti ty.  This

group can be cha rac te r i zed  by a single pa rame te r , the r a t e  of the

channel.  This ra te  will be defined to be the  number  of b i ts  per

picture element (b i t s/p ixe l )  which can be passed t h r o u g h a g iven

channel.  We wish to find the source  coding s cheme  which  mini-

mizes the number  of b i t s/p ixe l  requ i red  to r ep r e s e n t  an image  and

thereby reduc e the r equ i r ed  channel  ra te  to a m i n i m u m.  Given

this rat e, the pi c tu re  size , and per t inen t  t ime f a ct o r s , the  r e q u i r e d

channel capac ity can be comput ed . The irr~.ge coding pro b lerx -.

t he re fo re  cen te r s  around the design  of an “ opt imal”  sou rce  encoder-

decoder.
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4. 2. Pulse Cod e Modulation

An encoding scheme which has been widely used is pulse

code modulation (PCM). This technique, in its simp lest fo rm ,

involves the sampling of an analog signal at a uniform rate and

encoding these samples in a binary coder. An ad equate number

of quantization levels is required to maintain a good s ignal- to-noise

ratio. For most images this requires  a minimum of 64 levels;

therefore, 6-7 bits/pixel is the normal ra te  of such a system.

If too few levels are  used , the images will contain false  contours.

This type of noise is more annoying to a viewer than addit ive

random noise of the same rms value. Roberts has used this t rai t

in a pseudu -random noise modulation technique which lowers the

rate to 4 bi ts /pixel  [ 43]. Sinc e the noise that remains in a

— picture processed by the Roberts  method is random it can be re-

duced by averaging. Sawchuk has found that a modified Roberts

method which uses averaging and edge detection will produce 3. 1

bit/pixel images “almost” as good as the original [ 441 and [45]

Another approach has been to use non-uniform quantizatiori  [46] and

(47]. These techniques minimize the quantization error by taking

advantage of the statistical character of the image. For the Max

quantizer , optimum decision and reconstruct ion tables are computed

by using the probability dis t r ibut ion , p(f).  Al ternat ively, a non-

linear t ransformat ion  based on p(f)  can be performed and the result
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linearly quantized.  This latter procedure is called cornpanding.

The companding and Max quant izer  method s can reduce the rate

by as much as 1 bit/pixel.

Conventional PCM makes no assumption about the re la t ionshi p

between adjacent  pixels in an image. By default , the pixels a re

taken to be uncorrela ted  and as Habibi and Robinson have pointed

out , pictures satisf ying this assumption occur in places such as

television screens af ter  station si gn off and are  of little interest

[48). Schreiber has shown the conditional entropy of a PCM

signal (for the case of uni form amp litud e d i s t r ibu t ion  and p i c t u r e

correlation so hi gh that pixel to pixel var ia t ions  a re  p r imar i ly due

to random Gaussian noise equal to one quant iza t ion  level )  is 1. 12

bit/pixel  [131. This value represents  a lower bound to the re-

quired channel capaci ty for  PCM regardless  of the s t a t i s t i ca l

relationships employed. If the imagery being coded is rnul t i f rame,

the ra te  can be reduced by as much as a factor  of f ive  because

of the interframe redundancies [48].

4. 3. Different ial  Pulse Cod e Modulation

As pointed out ear l ier , PCM makes the assumpt ion that the

data is uncorre la ted  and the same number of bits is ass i gned to

every data point. Since picture data is obviously corre la ted  this

proc edure is ineff ic ient .  One way to obtain less co r re l a t ion
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between the point s to be coded is to use a linear predictor to

generate a differenc e signal and quantize this d ifference signal

with a Max quantizer based on the appropriate probability density

function. This type of coder is refer red  to as a differential  pulse

code modulator (DPCM). Several different  types of DPCM systems

have been used with the basic differences ly ing in the predictor

design (48, pp. 25-28]. The rates achieved with DPCM are  about

one half those obtainable with PCM [27].

4. 4. Transform Coding

Another way to decorrelate image data is to perform a two-

dimensional spatial transformation. As discussed in Section 3. 3,

the optimum t r ans fo rm would be the KLT; however , the l a rge

number of required computations make it a poor choic e for coding.

Several of the fas t  t r ans fo rm algori thms have been used [29 ,

Chapter 7]. Trans form coders per form two significant operations

which make them more efficient than most other types of coders.

The f i rs t  operation is that of performing the linear t ransformat ion

which maps the statistically dependent pixels into a set of “ more

independentlt (decorre la ted)  pixels. The second operation is to cod e

each t ransformed pixel independently, assigning the number of bits

according to the var iance of that coefficient a n d / o r  the location of

F the coefficient  in the t r a n s f o r m  domain. The f i r s t  c r i te r ion  gives
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more bits to those pixels with the hig hest va r i ance  or information.

The second c r i t e r ion  (pa r t i cu la r ly for  the Four ie r  domain)  ass i gns

more bits to those areas  in which the HVS sensi t ivi ty  is highest.

A major disadvantage of t r a n s f o r m  coding techniques is the

entire image must be available before processing begins. Thus,

large amounts of buf fe r ing  are  requ i red  for  a “ r ea l - t ime” trans-

form coding system. One solution to this problem is to p rocess

the image in blocks . For example , ra ther  th an compute the

2 56x  256 DCT of a 256x 256 image one may compute 1024 8x8

cosine t r ans fo rms  by per forming  a 32 x  32 par t i t ion of the or iginal

image. Only eig ht l ines of the image a re  requi red  for  p rocess ing

to begin and , in addit ion , the two covarianc e mat r i ces  which need

to be diagonalized to de te rmine  bit ass ignments  a re  onl y 8 x 8.

In other words , a sing le 8 x 8  bitmap is su f f i c i en t  fo r  coding the

entire 256 x 256 image. To visualize how the 8 x 8 bitmap is used ,

the partioned cosin e t r a n s f o r m  domain may be r eo rde red  as shown

in Figure 17. The 32 32 sub pictur e shown in the upper lef t  was

formed with the 1024 “DC” terms of the 8x  8 block t r an s fo rms ,

the next subpictur e is from the (0, 1) harmonics , etc . In this

manner the 8 x 8  block t r a n s f o rm  produces an 8 x 8  a r r ay  of sub-

pictures.  The reordered t r a n s f o r m  is call ed a Mandala t r a n s f o r m

and Kajiya [ 491 has suggested that the t r ans i t ion  to hig her har-

monic sub n-iages rotates  the “ f ea tu re” space into a “ t e x t u r e” space.
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In Figure  17, the subpic turee  have been scaled individually for

viewing purposes.  There  is mor e than six orders  of magnitude

differenc e b etween the coeff icients  of the upper left  and lower

right subp ictures. When coding this image every t e r m  in each

subimage is coded with the same number of bits; t h e r e f o r e , only

an 8x 8 bitmap is required. Not e how the increas ing  harmonics

(left to r ig ht and top to bottom) represent  more and more  “ c~I ge ”

information and the hig hest harmonic is almost random noise or ,

if you lik e, texture .

Sinc e an 8x  8 block t r ans fo rm coding technique uses an 8x  8

covarianc e mat r ix , this method does not take full advantage of the

redundancies  of the image. The per formanc e of block coders

improves with increasing block size;  however , co r re l a t ion  between

adjacent pixels is small fc shifts greater than 20 [ 38]. This

reduces the e r ro r  due to block s ize to an ins ign i f i can t  amount for

n> - 16  [U , p. 81.5]. For a l 6 x  16 block siz e and at 1. 5 b i t s/p ixe l

the Slant , Haar , Hadarnard and Four ie r  t r a n s f o r m s  have been

shown to g ive resu l t s  s imilar  to the KLT { 50]. Achromat i c

pictures  have been cod ed at 1 b i t /p ixe l  with a root mean square

error of . 8% [ 511. Since t r a ns f o r m  coding t echn iques  usual ly

involve some type of spat ial  f i l t e r i n g ,  they are  a type of adaptive

or psychovisual  coder.
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4. 5. Psychovisual  Coders

Psychovisual coders at tempt to take advantage  of the limita-

tions of the HVS and cod e only that data which can be perceived or

is meaningful. Since the visual  system is the means by which

most imagery is ul t imately used , compared , and/o r  jud ged , psycho-

visual coding should prove ef fec t ive .  A common point which is

used to support the importanc e of this t echnique  is that the human

observer can only absorb about 50 b i t s / s e c  [27]. When compared

to 10 8 b i t s / sec  (color television) the reduct ion is six orders  of

magnitude But the human obse rver  is usua l l y in a cogni t ive  mode ,

absorbing the bits of interest .  When one views a scene , the en t i re

scene -- in complete deta i l  -- is not perce ived  at once, If we know

exactly where the  viewer will look and what mod e he is in , the

“image” coding problem would be subs tant ia l ly reduced.  However ,

the cost of coding this per iphera l  informat ion would place the ra te

well above the 50 b i t s / s ec  bound . Thus , the bound is in teres t ing

but fa r  f rom obtainable .

Nonetheless , psychovisual coding is impor tan t  f r o m  two

aspects. The f i r s t , as previously mentioned , is “wh y t ransmi t  or

store that which is not used anyway? ” The second , and perhaps

more important  aspect , involves e r r o r s  in and the f ide l i ty  of the

coded images. If we implement a coder  in a “ pe rcep tua l  space ”

which minimizes  the  v isua l  e f fec t s  of e r ro r , i. e.,  mainta ins  a
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maximum image fidelity,  by how much can we reduce the rate  and

still obtain usuable r econst ru c tj on s7  A concomitant  benefit of such

an implementation is the deftnition of a valid error cr i terion.  At

present, most coding resu l t s  a re  jud ged subject ively  or with an

image space mean square  e r ro r  (MSE) c r i t e r ion  (which is known

not to be valid). However , if a MSE cr i te r ion  is used in a

perceptual space -- henc e a perceptual  MSE (PMSE) — its u t i l i ty

should be increased s igni ficant l y. Onc e such a fidelity cr i te r ion

is precisely defined , development of optimal coders  with speci f ied

rates and dis tor t ion levels becomes possible. Such an approach

can be couched quite nicely in terms of ra te  dis tor t ion theory .

4. 6. Rate Dis to r t ion  Theo r1

Berge r  has pointed out that  the re  a re  two basic problems to

be coped with when desi gning a coding system; ( 1 )  what informat ion

should be t r ansmi t t ed?  and (2)  how should it be t r ansmi t t ed

[42 , p. 2]? Early wo rk in info rmation theory concent rated on the

second problem. In 1959 Shannon addressed  the  f i r s t  problem

[ 521. He d efined the  rat e d i s to r t ion  funct ion of an informat ion

source with r e spec t  to a fidelity cri te r ion  and established the

fundamental theorems basic to r a t e  distortion theory.  Stated

simply, the bas is  of this theory is the ra te  di s tor t ion  funct ion of

a source  with known probabi 1ity~ d i s t r i b u t i o n  de t e rmines  the
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minimum channel capacity required to transmit the source output

as a function of the desired minimum average distortion [ 53].

The distortion function, or fidelity criterion , is a measur e of

agreement between the source and system output specified by the

user. The theory is covered in detail in Berger [ 42] and

Gallager [54 , Chapter 9]. A fundamenta l  r e su l t  is if D is the

des i red  average  d i s t o r t i on  and R(D) is the ra te  d i s t o r t i o n  func t ion ,

then a system can be desi gned that  achieves  the d i s t o r t io n  D if

and only if the capaci ty  of the channel between the  source  and user

is greater than R(D) . Thus , R(D) is the effective rate at which

the source  produces informat ion  sub jec t  to a d i s t o r t i o n  D. For

D =  0 , R(0 )  ~ H( . ) ,  where  H(~ ) is the ent ropy of the  s o u r c e .  As

D increases R(D) d e c r e a s e s  monotonically  and -- m o r e  i m p o r t a n t l y

-- in a convex manner , usually becoming  ze ro  at some f i n i t e  va lue

of d is tor t ion , D . A typ ical R(D) versus  D curve  is shown inmax

Fi gure  18.

There  a re  two key points in app lying r a t e  d i s t o r t i o n  theory .

Firs t , the probabi l i ty  d i s t r ibu t ion  of the source  is r equ i r ed .

Secondly, the ra te  d i s to r t ion  func t ion  must  be def ined.  Finding

the probabilit y d i s t r i bu t ion  of a c lass  of images  is not a simple

task , par t icu lar ly for  the sources  with memory  ( the  more in te res t ing

ones as noted earl ier) .  Onc e the d i s t r ibu t ion  is de te rmined  and a

distortion criterion selected , the problem of deriving R(D) usually
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proves to be unsolvable. One combination which is t ractable  is an

ind ependent Gaussian source with a MSE distor t ion measure. The

independent Gaussian assumption is cer ta inly not valid for image

sources; however , this part icular  combination is an upper bound on

achievable performanc e for any source  with common second mo-

ment s [ 53, p. 802].

To obtain this simp le result we must f i r s t  define the source.

Let X = [x . ,  i = l , 2, .. . , N) be the set of independent source samples

which are Gaussian with zero mean and variance a 2
. The output

of the source decoder (see Figure 16) will be represented  by

y = jy . , i = 1, 2 , ... , N~ . The distortion m e a s u r e  is defined as

d(X, Y) = (y. - x . )
2 

(81)

so that the average MSE becomes

D = 

~~~~~~~~ 

E((y.- x .) 21 (82)

where E ( ’ )  denotes the expected value operator.  The rate dis-

tortion function corresponding to these conditions has been shown

to be [42 , p~ 99]
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R(D) (83)

0 , D > a
2

This particular function is i l lustrated in Figure 19. The rate

pr edicted by equation ( 83) is achieved theoretically by encoding

in such a way as to produce an output error which is Gaussian

with varianc e D and is independent f rom sampl e to sample. In

practice, the rat e is approached within 1/4 bit per pixel by optimum

quantization (via a Max quant izer  [47] and noiseless coding { 53],

p. 803]. Davisson has given the following roug h intuit ive just i f i -

cation of the rate dis tor t ion function in te rms of quant iz ing  [53 ,

p. 803]. The noise standard deviation , as a function of the signal

amplitude , is inversely proportional to the number of quant izat ion

levels. Therefore , the number of levels should be proport ional  to

a/ ’f ~ and the number of information bits should be the logar i thm

of this quantity [ 55]. If the distortion is g rea te r  than the

variance of the signal , the t ransmiss ion  rate  should be zero since

nothing need be t ransmi t ted .  This is the relat ionship established

in equation ( 83).

In the prec eding discussion we defined a source  X and an

encoded output Y and obtained a set of pa ramet r ic  equations which

d efine the rat e distortion relat ionship.  Let us now consider the

Input to be a ras te r  scanned image , u(x , y) .  Fur ther , assume that
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this image is passed throug h a linear system defined by the trans-

fer function A(f , f ) ,  thus

v(x , y) = u(x , y) ® a(x , y) ( 84)

where a(x , y )  is impulse response corresponding to A(f , f ) .  The

encoded output , denoted as u(x , y )  will yield a similar resul t ,

therefore  the MSE distortion becomes

d(v , )  =ff  [v(x ,y ) _ (x , y ) ] 2 dxd y (85)

=11 [[u(x.y) ® a(x,y)] [i~(x .y) Q a(x y)J)
Z
~~ dy

=11 [fu (x ,y)~~Zi(x ,y ) ] ®a ( x y)~
2

dxdy

=ff [~ u(x ,y)  ® a(x ,y)J
2
d.xdy ( 86)

where ~u(x ,y )  denotes the d i f ference  picture formed by sub t ract ing

the coded image f rom the source  image. Now that the d is tor tion

measure has been defined we need only specif y the probabil i ty

distribution of the source to be abl e to calculate the rate  distort ion

function. We will take U to be a two-dimensional random fieldxy

representing the random source (a collection of random variables

parameterized by two independent variables) .  Let the estimate of

the mean be

= ECU ~ (87)xy
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and the correlation function be

R (r ,r ) = E U  U (88)%~ X y X+1’
x~~Y+ 1~y 

XY

We will assume the joint distr ibution of U to be Gaussian.xy

A gain , even though this may not be the correct  distribution , this

is a worst case assumption [ 411. Sakrison and Algazi  have

shown that for a ras ter  scan large compared to the correlation

distance of the image, the rate  distortion function is given para-

metrically by [ 561.

R( 8) = ÷ s (f ’ff ) > 8  

~~~~~~~~~~~~~~~~~~~~~~~~~ 
( 89)

v x  y

d(e) = f t  min [Sv(f x . f
y

) , 8] df x df
y ( 90)

in which Sv(f x~~
f
y

) is the power spectral density of v(x , y )  and is

defined as the Fourier  t r ans fo rm of R (i , T ).v x  y

Briefly reviewing, the following assumptions were  made in

obtaining equation (89) and equation (90):

(1) The class of images can be represent ed by a uniform,

homogeneous , and stat ionary random fi eld U .

xy
(2) The probability d istribution of U is a two-dimensional

joint Gauss ian  d is t r ibut ion.
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(3) The atitocorrelation , R ( x , y ) ,  and the corresponding

— power spectral density , S ( f , f ) ,  of U a re  known.

(4) The system t rans fe r  function A(f x i f
y

) and henc e, the

power spectral density, 5
V~~

1
X ’ 

f~ ) a re  known.

- Given these assumptions , we may compute a ra te  dis tor tion curve

similar to that in Fi gure 19 by vary ing distort ion, 0 , in equations

( 89) and ( 90). This curve will r epresen t  a theore t ica l

bound by which the per formance  of any coder imp lemented within

the system can be jud ged .
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SECTION V

STATISTICAL ANALYSIS OF THE HVS MODEL

In Section II we developed a mathematical  model for the HVS

(see Figure 2). Subsequently, some sta t ist ical  properties of

images were d iscussed  in Section III and the bas ics  of ra te  d is-

tortion theory were  presented in the previous section. In this

section we will bring these ideas together and develop a set of

rate distortion curves which are valid for a perceptual domain

defined by our HVS mod el. We will begin with an achromat ic

mod el.

5. 1. The Achromat ic  Case

If we as sume  a black and whit e image , then the two

chrominanc e signals c 1 and c 2 in Fi gur e 2 become zero.  Thus ,

the luminanc e signal , L , is the only output of our model and the

mod el r educes to that shown in Figure 20. This model has been

discussed extensively and analyzed by Hall and Hall 11. A

fundamental resul t of the anal ysis was that the hig h f r equency  roll-

off of the overal l  de sc r ib ing  funct ion for  this  system is a funct ion

of contras t .  In par t icular , as the contras t  of the input increases ,

the system sensitivity to high spatial frequencies decreases . This
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par t icu lar  charac te r i s t ic  is not present  in the  model of F i gu r e  21.

The simplified model in F igu re  21 i8 obtained f r o m  the

model of Figure 20 by assuming that  the in tens i ty  r ange  of input

images is in a l inear  portion of the logarithmic nonlinearity. Thus,

the low-pass spatial f i l t e r  can be passed throug h the nonl inear

function and combined with the hig h - p a s s  spat ia l  f i l t e r  giving an

overall  band pass funct ion .  This p a r t i c u l a r  type  of a r g um e n t  is

used in ju s t i f ying the contrast  sensit ivity func t ions  which a r e

obtained fr o m  s ine-wave  g ra t ing  exper iments .  Indeed , the band pass

filter of Figure 21 would be of the form shown in Figure B. 3.

We have previously compared the resu l t s  of p roce s s ing  black

and white images throug h these two ach romat i c  models  [57] . For

the model of Figure 20 a low-pass filter defined by

H
1 

( )  = 
. 14 

2 ( 91)
p 

.49 + ’i

was used. This funct ion corresponds to a 3mm pup il and it is

- 3dB at 6. 6 cyc les /degree .  The hig h-pass  f i l t e r  was defined by

-4 2
10 + w

H
h
(w) = 

-3 2
4x10 +.8w

The model shown in Figure 21 was implemented with a filter

function developed by Mannos and Sakri son [ 7] and it was d efined

as
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Hbp
(Ji ) = 2 .6 [0.  0192 + O . 0l 8~i ]  exp [-(0~ Ol8~ ) L 1

] (93)

This par t icular  function peaks at 8 cyc l e s /deg ree  and an isotropic

version is shown in Figure 22. Two 5l2x 512 images (one an

aerial photograph of Los Angeles  International  A i rpo r t  [LAX1 and

the other a country brid ge scene) were processed with  the two

achromatic models . The results a re  shown in F igure  23. From

the pictures in Fi gure  23 it can be seen that for  pract ical  pur-

poses the two mod els produce equivalent results. The only

differenc e is in the peak f requency  response which gives sl ightly

more blur in the full  achromatic  model case. Thus , it appears

that th e band pass mod el is valid for “real-world” achromatic

images.

In Section 3. 5 we found that an input process with first-order

Markov statistics produced a power spectrum (out of a logarithmic

nonlin eari ty)  giv en by equation (80). The output power spectrum

from the reduc ed achromatic model is simply

S2(’i ) = S (w) I Hb (w) 
2 ( 94)

where

22~. ~
S (w) = 2 2 + 2rr~.i 2 

6( ’~) ( 95)
a. + w

and Hb
(w) is g iven by equation (93)  Habibi and Wintz  have
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shown the Markov assumption to be valid for raw images and a

typical value for a. is • 1 [38]. Typical values for a 2 and are

• 5 and 16. 8 respectively. These parameters  g ive the set of

curves for S (w), Hb (w) J and S (w) shown in Figure  24.

The power spectrum d efined by equation (94) is valid for

the model shown in Figur e 21. Although the experimental  system

comparison shown in Figure 23 indicates the effects of the model s

in Figures 20 and 21 are  similar , a question of interest  is how

does S
~

(
~
s) compare to S

t (w)? From Figure  20 , given an input process

q with autocorrelation R
q

(~r) and power spectrum S (w) ,  the power

spectrum Sr (W) is defined by

-

. 

Sr (W ) = S
q (W) (H 1~

(sit) ~2 
( 9 6 )

where H
1 ( cii) is given by equation (91). By definition, R (i) is

the inverse Fourier  t r ans form of S (w),  hence

R r ( ~ = 
~~~J Sq(W ) I H1~

(w) I
2 e~’~ d~ ( 97)

We also known that in general

R ( r ) + 
~~~0r (T) ( 98)

which Implies

R(T) -

~~~~ 
= ( 99)a r
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Now from equation ( 74)

R ( r )  = + P~.(~t~) (100)

therefore

2 2
R ( r )  = + 

__~~_ R ( i ~) - ~~~~~~~~~ 
~~ (101)

Taking the Fourier transform we get

r 2 2 ’  21~~ ~~~M I
S8(ui ) = 2n’

[
~~ - 

S r  
j o(w ) + —1- 7(R (~)3 ( 102)

where 7[ ) denotes the Fourier transform operation. But R (T)

is given by equation (97) in terms of the inverse Fourier trans-

form of Sq ( U ) ) I H
1p ( W ) 1 2

• henc e

2 2  2
S5(w) = 2TT

[
~~~ - 

s r  
]b(w) + —f- Sq (W) l H1p (W) 1

2 
(103)

Of course St ( w) follows directly from

St (w) = S (w ) I H h (J)) 1
2 

( 104)

F where Hhp(w) Is given by equation (92). U we assume R (T) to

be first  order Markov of parameter ~ then
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I r 2 2 1  2
I I  a M I a 2s r ~~ s 2a .14St (w) = - 2 1 e~~ + 2 2 2 2
t L a a (a + w  ) ( . 4 9 + w

2 4 2

x U) 
2 (105)

4x10 ÷.8U)

Figure 25 was obtained by settingc~= .l and using ~r ’~~s’~~ 
an d a~ (as

determined from actual images) in equation (105).

In Section 3. 5 we showed the pdf at the output of a logari thmic

nonlinea r ity is Gauss ian, g iven that the input pdf is lognormal .  In

addition , Fi gur e 12 ind ic ated that the lognormal assumption is

valid for typical imagery and Figure 14 shows the pdf of the

output to be strongly Gaussian. Fur the rmore, the reasonable

assumption of Markov statistics at the input of the nonlinearity

leads to an expression for the power spectrum S (i). The band -

pass filter in the achromatic HVS model has also been verified by

several differ ent experiments and it is given by equation ( 93).

A review of the basic assumptions which led to the ra te  dis tor t ion

function defined by the pair of equations (89) and (90) reveal

that they hav e all been satisfied with the possible exception of

stationarity. Thus , we see that the achromatic  HVS models of

Figures 20 and 21 enable us to apply the ra te  dis tor t ion equations

to achromatic imagery.  The ra te  dis tor t ion curves  shown in

Figure  26 were  obtained by solving the pa ramet r i c  equations
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( 89) and (90) for various values of distortion e. This

operation is sometimes referred to as the h water_ f i l l ing h l procedure.

5. 2. The Chromatic Case

We will now consider the color image case , i. e.,  the

chrominance signals c 1 and c
2 in Figure 2. 2 are  not both zero.

If we again assume the low-pass spatial f i l ters  can be passed

through the logarithmic nonlinearities the model reduces to that

in Figur e 27 which is precisely the Frei model for color vision

[3 1.

In this model the matrix IT] is defin ed by equation (23)

and the three constants k
1, k 2 ,  and k3 are  2 1 . 5 , 4 1 . 0 , and 6. 27

respectively ~ 31. The three signals , L*, c , and c~ are there-

fore  given by

21.5 0.0 0.0

= -41.0 41.0  0.0 t~ ( 106)

-6. 27 0. 0 6. 27

The signal is identical to the luminanc e signal of the achromatic

case and the bandpass spatial filter in this channel is identical to

the achromatic case and is defined by equation (93).  The two

chromatic channels have band pass char ac t er is t ics whic h peak at 4

cyc les /degree  for c 1 and 2 cycles/de gree for c 2 . These peak
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fr equency points (for L, c 1, and c2) have been established through

psychophysical  techniques by Faugeras  [37 , Figure  3.9]. The

three bandpass fil ters may therefore  be defined by

H~
(w ) = 2.6 [0.  0192 + 0 .018w] exp [ -(0 . O l8w ) 1 ~1

Hc ( w) = 2 . 6 [0. 0192 + 0.036w] exp [-(0. 036w)
1 ~]

1

H (w) = 2. 6 [0 . 0192 + 0 . 0 7 2 w ]  exp [-(0. 072,, ) 1 1
1 ( 107)

2

where the subscr i pts L , c
1
, and c 2 re fer  to the appropriate  channel.

The probabil i ty densi ty  funct ion which was shown to be valid

for the output of the achromatic model is still valid for  the

luminance channel of the chromatic  mod el. In addition , if t and

as well as t~ in Figure  27 a re  Gaussian then c~ and c~ and

of course c
1 

and c 2 a re  Gaussian. This follows since the sum of

two Gaussianly d i s t r ibu ted  processes  has a Gaussian pdf . Pro-

bability plots of L, c 1, and c 2 for  the Kodak GIRL a re  shown in

Figure 28. The s t ra ig ht lines in these three  plots  indicate the

underly ing pdfs are strongly Gaussian.

In order to apply th e rate distort ion equations developed in

Section 4. 6 , we need the output power spectra for L , c and c 2 .

We may again draw upon the resul ts  of Section 3. 5 to establ ish

that the processes  at t~~, t , and t a re  f i r s t  order  Markov if the

original inputs a re  Markov.  Plots of the f i r s t  14 spat ia l  co r rel a t ion
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* * *coef ficients computed in the t 1, t 2 , and t 3 planes a re  shown in

Figure 29. They form three straight lines in the log-linear

plots which indicates all th ree  processes  a re  f i r s t  order Markov.

Furthermore, the parameter s a, i , and a 2 in equation (95) can

be determined from the data; thus , the power spectra of t~ , t ,

and t can be computed. The value for a is simpl y the slope of

the appropriate line in Figure 29. The mean, M. is defined by

= E[t~~(x ,y)3 = —4 
~~ ~~ 

t .’ (x ,y )  ( 108)
N x= 1 y = l

where i = 1 , 2 , 3 and N is the width and J ength of the square  image

• a r ray.  Similarly, the var ianc e, a 2 , becomes

i N N
2 * 2 1 I~~~~~~’ * 2  2 2a . = E~~[t .(x ,y) -M I  3 = —-

~~

-——
~~~~~~~~~

,

~ 

~~ 
t. (x ,y)  - N M. (109)

N - i  x=l y= 1

Values for these parameters as determined from the GIRL image

are  shown in Table 1. From equation ( 106) 
~~~~~~ 21. 5t~~,

therefore [ 39, p. 339, Table 10- 1)

S = I 21. 51
2 

S ( 110)
t i

Equ ation ( 106) also d efines c~ and c~ as

* * *C
1 

-4l t 1 + 4 1t 2 ( ill)
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TABLE 1

STATISTICAL PARAMETERS FROM GIRL IMAGE

Color
oordinat e

Parameter £ c 1 c2

a. 0. 0388 0. 0228 0. 024

3. 96 -0. 228 -0. 064

2 
18.26 3.90 1.26
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and

c = -6. 2 7 t ~ + 6. 2 7 t  (112)

Now the sum of two random variables ,

z ( t )  = x( t ) + y(t )  (113)

has a power spectrum d efined by [ 39, p. ~~~~

S (!.iJ ) = S (u~) + S (w) + S (w) + S (ii ) (114)zz xx yy xy yx

Therefore,

S ~(w) = 4 12
S 

~~~~~ 
+ 41 2

S ~(w ) - 4l 4
S (w ) - 41 2S ~ , (w) (115)

c
i 

t i t 2 t l t z t 2t
l

and

S ~(w) = 6. 27 2
S ~w) + 6. 27 25 (W ) - 6. 27 2S 

~
(w ) - 6. 27 2

5
C

2 
t
i t3 

t
l
t
3 t

3
t

l

( 116)

define the power spectra o. c~ and c~~. For the case of decorre-

lated color planes the cross-spectra  are  zero and equations ( 115)

and (116) reduc e to

S = 4 12 [S 
~~~ + S 

~~~ 
(117)

c 1 t 1

and
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• ~~~~~~~~ -

S ~(ui ) = 6. 27
2
[S ,,~(w) + S (118)

F C
2 

t i t 3

Since we have expressions for S ~
(w) , S

~~
(w ) , and S ~(w) i  the output

£ 1 c 2
power spectra are defined by

S
L

(w) = S~~~
(w) I H~ (t v) 2

~ c (w) = S ~(w) ~Hc ( w ) I
1 c~ 1

and

S (w) = S~~~
(w) I H ~~ ( w t

2 (119)

where H L
(w) .  H c ( w ), and H~~ (w) are g

iven by equat ion ( 107)

Plots of S (w) , Sc (w), and S (w) are shown in Figure 30.
£ 1 C 2

The three curves of Figure 30 can now be used to compute

a rate  distortion curve. A slig ht modification of equations ( 89)

and (90) is required to accommodate the three independent

spectra; hence,

3 IS .(f , f ) 1
R(9) = ff log

2 ~ 
~ 

j  
df,~ df

y 
I

t 1  S(f ,f ) > 9I x y

and

3
d( 9 ) = ~~~ ff mm [S.(f ~~i f

~
) .  9 ]  df dl ( 121)

i= 1 —~
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where i= 1 ,2.3 refers to L. C
1

, and c2 r espectively. The re-

sultant ra t e dis t ort ion cu rve obtained by using the parameters in

Table 1 is shown in Figur e 31.

In this section we have developed expressions for the output

power spectra of our achromatic and chromatic HVS models. In

addition, a set of paramet ri c rate distortion equations based on mean

F square error and Gaussian pdf was used to obtain a set of curves for

the theoretical coding performance of our HVS models . These curves

can be used to evaluate the results of the coding exp eriments which

will be detailed in the next two sections.
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SECTION VI

ACHROMATIC CODIN G EXPERIMENTS

In thiø section the results of several coding experiments on

black and white imagery will be presented. The initial experiments

involve standard t r ansfo rm coding techniques and are  included for

comparative purposes . The later experiments make use of the

achromatic model of the HVS developed in Section V.

6. 1. Block Cosine Transform Cod~~~

H Block transfo rm pi cture  coding has been invest igated by several

researchers [11], [38), and [58] and we will not develop the theory

here. Rather , the procedure as implemented , will be presented

and the reader is referred to the references for  the theoret ical

details.

The first step is to obtain a varianc e matrix for  the pictur e

to be coded. This matrix will be of the same block Size as the

subpicture size. The varianc e matrix is used for two purposes .

The number of bits to be used to encode a par t icu lar  t r ans form

coefficient will be proportional to the  variance for that coeffic ient .

Also, each coefficient will be normalized by its respective var iance

prior to being quantized with a Max quantizer [47]. We will
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assume the picture data is first order Markov. A block Toeplitz

array with The desired correlation, p , is generated as

2 N-i1 p p ... p
2

0 1 p p

2p

1 1 ( 122)

wher e N is the width and length of the subpicture. For the case  of

spatially separable  t ransforms, two of these a r r ays  are  used -- one

for the row and one for the column stat is t ics .  They are  both

t ransformed (for this example by the DCT) yielding row and column

covarianc e mat r ices .  The diagonals of these two mat r ices  a re

used to fo rm a normalized varianc e matrix via an outer produc t

expansion. Finally,  assuming ergodic images , th is ma t r i x  is

multiplied by the spatial varianc e to obtain an unnormalized varianc e

matrix for  the t rans form domain.

The process used for determining the bit ass ignment  was

developed by Pratt [ 59]; and , for the case of Gaussian data , the

algorithm is optimal. Basically the a lgor i thm uses the Gaussian

error function to decrement the largest varianc e of the array one

bit at a time, until the total number of desired bits have been

“spent.” Each time a varianc e is decremented the  bit value for

96
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that location is incremented.  When the process  is comp leted the

bitmap which has been generated will produc e the minimum e r r o r

if the data are Gaussian. If the des i red  average  bit ra te  is B ,

and the sub picture  size is N by N, then this procedure req uires

EN 2 passes th ru  N 2 data points. The computat ion involved grows

quite rapidly and for N >  32 the cost versus  optimality i s sue  must

• be considered careful ly .  For this experiment N = 8 or 16; there-

fore , the computational time was not a major fac tor .

Once the var iance matrix and bitmap a re  obtained , the p i c t u r e

is divid ed into sub pic tures  of s ize  N x N  and a two d imens iona l  co-

sine t r a n s f o r m  is pe r fo rmed  on each subp icture .  A r eo rde red  and

scal ed version of a 256 by 256 p ic tu re  which  was cos ine  t r a n s f o r m e d

in 8x 8 blocks was shown in F igu re  17. The ori ginal p i c tu re

(F igure  32) was a low noise vers ion of the Kodak GIRL (note  that

she is facing the opposite direction from that usually seen. This

is to aid in d i s t inguish ing  this low noise ve r s ion ) .  The h i s tograms

and other s ta t is t ical  data discussed in Section 3. 5 were  obtained

from this image. The ver t ica l  and hor izonta l  cor re la t ion  were

nearly equal and a value for ~ of . 96 was used to code this  image.

A 1 bi t /pixel  8x  8 bi tmap is shown in F igure  33. The coded re-

sult for  two block s izes  is contained in F igure  34.

Close inspection of F igure  34 reveals one of the problems

with this type of coder. When a sub pic tur e  contains a hi gh cont ras t
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Fi gure 32 . Low-noise GIRL (original)

6 4 4 3 3 2 2 2
4 3 2 1 1 1 1 0
4 2 1 1 0 0 0 0
3 1 1 0 0 0 0 0
3 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0

Figure 33. A 1 bi t/p ixel  Bitmap (8 x 8 block size,
p = . 96)
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(a )

(b)

Figure 34. Two 1 bit/pixel Cosine Coded Images
a) 8 x 8 block size , NMSE = . 39%
b) 16 x 16 block size , NMSE = . 36%
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edge, the D.C. value fo r that block ’s t r ans fo rm is coded with an

error large enough to make the  sub pic ture  v is ib le . This type of

noise is very annoying to the viewer, Channel errors in the D. C.

term also produce the same effect.

6. 2. Full Image Cosine Transform Coding

This section covers the special case  for N equal to the image

width and number of lines, i. e., the subpictur e size equals the size

of the input image. Again, we will assume fi rst order Markov

statistics. Since N= 256 we will not be able to use the optimal

Pratt bit assignment algorithm. For this experiment we will use

the equation

I N N  1
b.. = B + 2 1og 10c7~ . - 4~- ~ ~~ 1o8~ 0a~~~

( 
(123)

k=l L=l

where b.. is the ij~~ entry in the bitmap, B is the desired average

bit rat e, 0~ . is the variance of the ij~~ transform coefficient and
1)

denotes int eger part of. This algori thm is suboptin-ial due to

the rounding operation [ 1  [59]. The are obtained from a

256x 256 varianc e matrix computed as in the previous section.

Because the variances become very small for l a rge  ij, we will use

the fewest bits for these t e rms . A typ ical b i tmap  is shown in

Figure 35. The white area in the upp er left r ep r e s e n t s  the maxi-
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Figure 35. A 256 x 256 Cosine Domain Bitmap, p = .96

Figure 36. A 256 x 256 Cosine Coded Image
1 b i t / p ixel , NMSE = . 24%
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mum bit assignment which was nine in this case. The black area

had zero bits assigned and the intermediate grays varied between

one and eight. Two comments are in order. First , the upper left

point is the “D .C . 11 cosine coefficient and for this experiment this

term was not coded , i. e. , the bits allocated to thj s term were

equal to the machine word size (36 bits). This “ ext r avagence”

represents an increase of 27/N 2 
or . 000412 bits in the average bit

rate. In doing this a stability in the coded image mean , which

minimizes error and eliminates the need for scaling before viewing,

is achieved. The second comment is in regards  to the shape of

the contours in the bitmap. They are hyperbolic with maximum

number of bits assigned to the coeff icients  on the t r a n s fo r m  axes.

An image cod ed to 1 b i t /p ixel  in this manner is shown in Fi gure

36.

6. 3. Full Image Fourier Transform Coding

The procedures discussed in the previous section can be im-

plemented, wi th minor changes , in the Fourier t ransform domain.

The major difference between the cosine and Fourier t ransforms is

that the Fourier is complex. At f i rs t  glance it would appear that

we will double the number of coefficients which must be coded.

However , due to the property of conjugate symmetry, which holds

for the t rans form of pure real data (i. e., no imaginary par t ) , - this
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is not the case. Thus , a 2 5 6 x  256 image t r a n s f o r m s  to a 2 5 6 x  129

complex Fourier  plane. There a r e  several ways to order the fre-

quency coeff icients  in this plane. A common a r rangemen t, and the

one used in this work , is shown in F igure  37. In this d iagram

the D. C. term is located in the upper left corner .  Frequency in-

creases downward and to the r ig ht until the (0 , 128) point is reached .

The frequency decreases  (on the ri ght) f r o m  this  point until the

(0 , -1) frequency is reached. The s emicircies  represent  contours

of constant radial  f requency .  Two 256 x 256 block Toeplitz matr ices

are  Fourier  t r ans fo rmed  and the d iagonal  vec tors  a re  used to

generate  the des i red  2 5 6 x  129 va r iance  matr ix  and bitmap. A

typical bitmap is shown in Figur e 38. This b i tmap readi ly

illustrat es the fr equency symmetry.  Note that the hyperbolic

contours are  still present .

The bitmap of F igure  38 is not complex . The complex

Fourier coeff ic ients  are  coded by Max quant iz ing the real and

imaginary part of each coeff ic ient  to the co r respond ing  ra te  in the

bitmap. There fo re , twice the number of bits allocated to that

location in the real b i tmap a re  used and the f inal  average bit rat e

is 2B/N
2 , where  B is the total number of bits in the bitmap and ,

for the present example, N = 256. A picture which has been coded

in this manner  is shown in F igu re  39.
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6.4. Block Cosine Coding in the Perceptua l  Domain

Thus far we have considered the coding of the original image

only. We will now consider the coding technique d iscussed  in

Section 6. 1 as implemented on a preprocessed image . In par t icular ,

one processed with the achromat ic  model of the J-IVS as shown in

Figure 21. The complete process is i l lus t ra ted in Figure  40.

A preprocessed image is shown in Figure  41. For this experi-  - _ 4

ment the f i r s t  order  Markov assumption was still  maintained and

the Pratt bit assignment algori thm was used. The resul ts  for  two

block sizes and 1 b i t /p ixe l  a re  shown in F igure  42.

6. 5. Full Image Cosine Coding_in the  Perceptual Domain

The full image techni ques of Section 6. 2 can be applied to the

1-IVS pr eprocessed image also. The pro ’~ess is the same as that

shown in Fi gure  40. The image shown in F igure  43 is a 1 bit per

pixel result. The f i r s t  order Markov assumption was used for  this

image and the bitmap was s imi la r  to that in F igu re  35.

6. 6. Full Image Fourier  T r a n s f o r m  Coding in the Perceptual

Domain

In Sections 6.4 and 6. 5 we considered the  cosine coding of

preprocessed imagery.  The f i l t e r ing  process  shown in F igu re  40.

is implemented in the Fourier  domain , thus coding in the Four ier
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(0 ,0) (0 ,128) (0 , -i)

(128 , 0) (128 , -i)

Figure 37. Fourier Domain Frequency Location

I--

Figure 38. A 256 x 129 Fourier Figure 39. A 256 x 256 Fourier
Domain Bitmap Coded Image

1 bit/pixel ,
NMSE . 23%
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Figure 40. Psychovisual Cosine Coder

Figure 41. A HVS Preprocessed  Image
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(a)

(b)

Figure 42. Psychovisual  Cosine Coded Images , 1 bit/pixel
a) 8 x 8 block size , NMSE = . 57%
b) 16 x 16 block si z e, NMSE = . 50%
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Figure 43. A 256 x 256 Psychovisual Cosine Coded Image
1 bi t/p ixel , NMSE = . 44%
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domain is more expedient. The revised  process  is d iagramed in

Figure 44. The techniques for obtaining the varianc e matr ix  and

bitmaps discussed in Section 6. 3 were  used to cod e the HVS pre-

processed image . A bitmap s imilar  to that of F igure  38 was

obtained . A coded image is shown in F igu re  45.

6. 7. Perceptual Domain Power Spec t rum Coding

The coding techni ques discussed in previous sect ions had two

• things in common: a var iance  matr ix  was computed and f i r s t  order

Markov s tat is t ics  were  assumed . The Markov assumpt ion  is rea-

sonable for  the original image domain. In Sections 3. 5 and 5. 1 it

was shown that the f i r s t  order Markov assumption fo r  the input to

the achromatic  HVS mod el led to a power spec t rum equation of the

form

• 
• 2

+ 2 .~
2
~~(’i~~) 1H bp~~r ) l 2  (124)

~ + w r

where Hb (uJ ) is d efined by equation ( 93). If we choose to not

code the D. C. term then we need only consider

2c~cy 2 
2

= 
2 ~

‘
2 J H b

(1 ) I  (125)
a. + ‘u r

This equation def ines  the power for all i > 0  and can be used to
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Figure 44. Psychovisual Fourier Coder

Figure 45. A 256 x 256 Psychovisual Coded Image /

1 bit/p ixel, NMSE = .26%
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determine the varianc e and bit allocation for any Wr >O • Thus , the

modification of the Markov statistic s which occurs due to the band -

pass fil ter can be taken into consideration. Moreover , the genera-

tion of a 25 6x  256 variance matrix is no longer required.

To obtain a bit assignment one merely solves equation (125)

• for a particular W ,

• 
‘.1.2 2

w = w ~~~ 1 + J  (126)
r 5

where i and j a re  the indices of the Fourier coefficient  to be cod ed

• and ij is the scal e factor for conversion to r ad i ans /deg ree .  The

computed value f rom equation (125) , call it ~~~~~~~~, is used in

b .. = 
[

log 2 
~~ 1 (127)

• to obtain the bit allocation for the ij~~ ;oefficient. Equation

can be rewri t ten as

b1. = 
[

log 2 ~~ + log 2 
(128)

The factor , y , is selected to yield the desired bit rate. From

FIgure 24 it can be seen that 1og 10~~ has a maximum value of

approximately -2 , therefore  y should be about 5x  ~~~ to obtain 9
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• bi ts for b .. maximum. Experimentally, it was found that average

ra tes of . 1 to 1 b its/pixel required y ’ S of 8.9 x l0~ to 9 x l0~~.

The Fourier coefficient to be cod ed is normalized by ~~~~~ . and Max
U

quantized to b .. bits for the real part  and b .. bits for the imaginary

part. Note that no s torage other than that for  the t ransformed

image is required. A typical bit allocation is shown in Figure 46.

The obvious differenc e between this bitmap and those in Figures  35

and 38 is that the contours a re  now s ernicircles of constant radial

frequency. This charac ter is t ic  shape is that of the isotropic f i l ter

function H
b

(w). Thus , the coding technique is taking full advantage

of the image f i l ter ing provided by Hb
(w). Several cod ed images

• a re  shown in Figur e 47.

Now that we have a closed form expression for variance and

bi t allocat ion it is possible to code any s ize t r a n s f o r m  we wish.

In particular , a 512 x  5 12 image (which is analogous to a standard

TV image) may be cod ed. The results are  shown in Figure 48.

As can be seen from Figure  48 bit rates on the order of 1/10

of that previously achieved can be obtained with this technique and

the degradation with decreasing rates is “graceful .” A comparison

of the coded rates and their  associated distort ion with the curves

In Figure 26 indIcates these resu lts  are consistent with the rate

distortion curves.
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Figure 46. Perceptual  Power Spectru m Bitmap
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Figure 47. Perceptual Power Spect rum Coded Images (N = 256)
Upper left : Original
Upper rig ht: 2 b i ts/p ixel , NMSE = . 08%
Lower left : 1 b i t /p ixel , NMSE = . 18%
Lower rig ht: . 5  bi t/pixel , NMSE = .42%
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(c )  (d)

Figure 48. Perceptual  Power Spect rum Coded Images (N = 512)
a) O ri ginal
b) . 5 b i t/p ixe l , NMSE = . 28%
c) . 35 b i t/ p ixel , NMSE = . 50%

d) . 1 b i t /p ixe l , NMSE = . 72%
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SECTION VII

COLOR CODING EXPERIMENTS

This chapter contains the results of several  color coding

experiments. As in Section VI , the initial experiments involve

r elatively standard techniques and are  mainly for  comparative

purposes . The last section contains results  obtained with the

model of the HVS developed in Section 11 and i l lustrated in Figure

27.

7. 1. Color Coordinate  Transformat ions

It has been shown that t r ans form coding in a color coordinate

space , such as the YIQ space , is pr eferabl e to coding in RGB

spac e ( 
58 

~
. Indeed , Pratt has considered the color coordinate

transformation followed by a spatial t ransformat ion of each color

plane as a three-dimensional  t ransformat ion  [50 1. The optimum

coding t ransformat ion  would be a three-dimensional  KLT which

would comp letely decor re la te  the 3N
2 color- image components.

The computational compl exity involved in such an approach has

been discussed previously.  However , several  color -coordinate

conversions provide a l a rge  amount of energy compaction and some

decorrelation and t h e r e f o r e  approach the opt imum KL expansion.
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We will use four of these convers ions;  YI Q . Lab , Faugeras  (or

F-space) ,  and Fre i  (or  C-space) .  These color spaces  w e r e  pre-

sented in Section 3. 4 . The color image which will be used for  the

N = 256 experiments is the Kodak color GIRL. Black and whi te

versions of the various color planes of this  image a re  compared

in Figures 49, 50 , and 51 .

The energy content of the color planes in several coord ina te

spaces was computed and the resul t s  are shown in Table 2.

In addit ion , the co r re l a t ion  between color planes was computed and

these resul ts  a r e  shown in Table 3. The  KL entry in Table 2

is f rom Pratt  [ 58]. From Table  2 we see that the HVS model

which was developed in Section II and is approximated by the Frei

model maximizes the energy  compaction. The d i f f e r e n c e  between

the cube root and logar i thmic  nonl inear i t i e s  is minimal.  For the

case of correlation , obviously F~~L is the best. As to which of the

others is second best is questionable.  The YIQ convers ion is

much lower b etween planes 1 and 2, however , the cor re la t ion

between planes 1 and 3 is higher than Lab or G b
. Although

the correlat ion between planes 2 and 3 is lower for  YI Q , this is

considered to be of secondary impor tanc e s ince the  energy com-

paction indicates the bulk of the bits to be used in coding should

be allocated to plane 1. It should also be pointed out that  the data

of Tables 2 and 3 were  obtained without  any spa t ia l  f i l t e r i n g .
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(a)  L (b) Y

(c)  F 1 (d)  C1

Figure 49. The 2 56 x 256 Color GIR L Image ( Luminance
Planes)
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(c )  F 2 (d)  G2

Figure 50. The 256 x 256 Color GIRL Image (F i rs t  Chrominance
Planes)
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(c )  F 3 (d)  G3

Figure 51. The 256 >‘ 256 Color GIRL Image (Second Chrominance
Pl anes)
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Therefore , the tables represent the color coordinate conversion

characteristics only.

7. 2. Block Cosine T r a n s f o r m  Codj n 1

The block t r ans fo rm coding procedur e used for color imagery

is an extension of the techniques outlined in Section 6. 1 for  mono-

chrome images . The process is similar to that of Pratt et al.

[ 
50 1 and is as follows:

(1) Model the row and column varianc e matrices of RGB

as f i r s t - o r d e r  Markov processes  and compute the var iances  of the

elements of the color coordinate space to be cod ed.

(2) Spatially t r ans fo rm the color planes with the desired

t ransform, obtaining T 1, T 2 ,  and T 3 .

(3) Model the probabil i ty density of the “DC” t e rm of T 1 as

a Rayleigh density and all other te rms  as Gaussian densit ies with

variances as computed in step (1).

(4) Dis t r ibut e the total number of bits between the color

planes by a rat io consistent  with the energy packing and the optimum

.6 2 5 / .2 7 5 / .  1 rat io for  YIQ as determined by Pratt  et al. [50 ].

(5) Ass ign a number of bits  to each t r a n s f o r m  coefficient

according to the Pratt  a lgor i thm discussed in Section 6. 1.

All of the above steps are  straightforward with the possible

exception of 4). The ratio . 6 2 5 1 . 2 7 5 / .  1 for YIQ was determined
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through a lengthy exper imental  process  by Prat t , et. al. [ 50J .

This rat io apparent l y does not change within a class of imagery

[ 50 1. Bit ass ignment  based on total energy has been shown to be

an effective s t r a t egy ,  t he re fo re , the YIQ rat io was adjusted to

.7 1.21.1 for the C and Gcube spaces and to . 6 / .  2 5/ .  15 for  Lab

space. The Faugeras  space b its were  d i s t r i b u t ed with the YIQ

ratio. It is recognized that this somewhat h e u r i s t i c  a l location of

bits is questionable, however it was not the intent of the present

work to investigate the bit allocation for  this type of coding pro-

cedure.  The YIQ ra t io  is optimal and an optimal ra t io  for  each

of the other spaces could be determined by the lengthy process as

outlined in { 50 ]. Althoug h this would onl y have to be don e once

for each class of imagery, it is still a ser ious d i sadvan tage  to

this type of coding.

The GIRL picture  was coded following the above proced ’~re

for 8x 8 and 16x  16 blocks at several  bit r a tes . In this work when

we refer  to a bit rat e for a color image we mean the total  ave rage

rate per pixel. Thus , 1 bit/pix el for  the G b coded image

implies . 7 b i t s/ p ix el to the C
1 -plane , . 2 bi ts/pixel  to the C 2 -

plane , and . 1 b i t s/ p ixel to the G 3-plane. F igure  52 contains the

1 bit/pixel resul ts  for  the 16x 16 cosine coded YIQ , Lab , and

G b spaces . To aid in jud ging the compara t ive  qual i ty  of the

results , the th ree  images a re  displayed in con junc t ion  with the
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Figure 52. Cosine Coded 1 bit/pixel 16 x 16 Blocksize

Upper left : Original
• Upper ri ght: YIQ , NMSE: Red= . 58%, Green= .9 8% , Blue=l .69%

Lower left : Lab, NMS~~: Red= .49%, Green= .76%, Blue l.03%
Lower right: G

~~ be~ 
NMSE: Red= . 58%, Green= . 79%, Blue=l . 03%

Figure 53. Cosin e Coded and Fourier Coded (1 bit/p ixel 256 x 256
Blocksize)

Upper half: Cosine Coded
• Left: YIQ, NMSE: Red= .42%, Green= .73% , B lue = 1.2 5%

Rig ht: G b ,  NMSE: R ed= . 36%, Greeri=. 52%, Blue= . 85%

Lower half: Fourier Coded
Left: YIQ, NMSE: Red= .42%, Green= .76% , Blue= 1. 59%
Rig ht: Gcube~ 

NMSE: Red= . 39%, Green= . 52%, Blue . 86%

L 
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Figure  52. Cosine  Coded I b i t / pixel  1’ 16 Blocksize
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Figure 53. C o s i n c  Codrd  and F o u r ier  Coded (1  b i t/p ixel  256 x 256
Blo cis s i z e )
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original. This quadruplet was photographed and processed as an

entity and any differences between quadrants is a result of the

coding and not the reproduction process.

As can be seen, the coded images contain a la rge  amount of

random colored noise. In addition, the blocking e r rors  which w e r e

noted in the black and white block coding section are  apparent  in

the color images as well. These blocking e r r o r s  a re  accompanied

by a large number of very low pixel values (i. e., — o on the 0 to

255 scale used for display ing). The source of this noise becomes

• evid ent when viewing the black and white t r i plet of the coded YIQ

• spac e as shown in Figure 53. The effect is worse  for  8 x  8 blocks

than 16x  16 blocks. A l i t t le r eflection reveals the problem. For

bit rates of — 1  b i t / p ixel an 8x 8 block has 64 bits to distribut e

throughout the 8x  8 cosine t r a n s f o r m  domain. Of these  64 bits ,

8 to 12 a re  usually assigned to the DC t e rm (depending on the

correlat ion used in the  Markov model).  This still leaves enoug h

bits to obtain low quant iza t ion  e r r o r s  in the impor tan t  low fre-

quency and mid- f requency  harmonics , as evidenc ed in F igures  33

and 34. When the average rate is reduced to • 1 b i t /p ixe l , as in

the Q-p lane coding for  example , we a r e  left with 6 bits for  the

ent i re  block This is not enoug h bits for the DC t e r m  alone.

For 16 x 16 blocks the problem is not as acut e s ince we would ha ve

25 bits to d i s t r i b u t e , but they would have to be al located over 256
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Figure 54. Monochrome Disp lay of YIQ Space
Cosin e Coded 1 bi t/p ixel
8 x 8 Blocksize

Upper left : Original
U pper ri ght: Y
Lower left : I

• Lower ri ght: Q

128



- - • - - - - -

coefficients . However , the higher harmonics grow less and less

important and zero b its assigned to these coeff icients  have l i t t le

affect on the coded image; thus , as the subpic ture  size grows the

problem becomes less significant .

7. 3. Full Image Cosine T rans fo rm Coding

In the previous section it was noted that small block sizes

place a large burden on color coding because of the low number

of bits assigned to the chrominance planes. The best results  we

could hope to achieve would be for  the case of block s ize equal to

the image dimensions . A • 1 b i t /p ixel  allocation in the 0-plane

would give 6553 bits to be allocated. U we allocate 36 bits to the

single D. C. t e rm only ~% of the total bits have been us ed on DC

and this gives no DC error. In the previous section , for 8 x 8

blocks , even if we allocated all bits to DC components we would

have a minimum er ror of . 23% in the coded DC terms.

A 256x 256 block size was used to cod e the various color

planes as discussed in Section 7. 2. The large block size was the

only variation in the coding pr oc edure. As expected , the resul ts

were  bet ter  than for  8x  8 or l 6 x  16 blocks. A large  amount of

random colored noise was still p resen t , however , the noise

associated with subpicture size was not present . This is evident

In the two coded images shown in the upper half of F igure  54
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7.4. Full Image Four ie r  T r a n s f o r m  Coding

A full image Four ier  coder was implemented as a step toward

the psychovisual coding to be discussed in Section 7. 5. No si gni-

ficant differenc e in the coding results was anticipated since the

Fourier and cosine t r a n s f o r m  both approach the  optimum KL in

energy packing for N = 256. Indeed , the black and white  resu l t s

of Section 6. 3 revealed no s igni f icant  improvements  over that of

Section 6.2. The total bit allocation between planes which was

specified in Section 7. 2 was used. The major variation in the

coding procedure was broug ht about by the complex Four ie r  plane

and the symmetries which exist. The method used to ass ign  bit s

within a plane and to quantize the complex coeff ic ients  was that of

Section 6. 3. Two coded images are shown in the lower half of

Figure 54. As anticipated , no significant improvement over the . -

cosine coder was noted. The slight d i f ferences  which may be

seen between the two halves of Figure 54 are due to the d i f ferent

color spaces and in t e r -plane bit ass ignments  rather than intra-

plane bit assignment and type of spatial t r ans fo rm.

7. 5. Perceptual Domain Power Spect rum Coding

In the pr evious sections one important problem which was

common to all of the coding accomplished was that of in te r -p lane

bit assignment .  This problem can be handled easily throug h an
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extension of the black and white power spect rum coding discussed

in Section 6. 7. In that  section bit s were  assigned by equation

(127) which contained a factor , y, used to vary the bit rate.

For the color coding case  we merely select y for the des i red total

rate and keep it constant  for  the coding of all t h r ee  color planes.

Thus , the percentage  of bits ass igned  between planes is determined

by the color power spec t rum equations of Section 5. 2.

From equations (9 5),  (110), (117), ( 118), and (119) we have

r 2
_ _ _ _ _  

2Sf (IJ ) = 2 1 . 5  2 1H L
( 1

~~~~ 
(129)

~ +J J1 r

2 2 ’
~~~ 

2o. 1
r’-

1 2~~7a 3 2
S

i
( W )  = 41 2 2 + 2 2 (130)

I~~~ -t- W 0. + ‘J.)L l  r 2 r

and

2 2I 2~~ cy ~~~~
Sc~~

(W r ) 6. 27
2

k 
2

1 
2 + 2 ~ [H z

( i i ) 12 (131)

I r 3 r

Now for  the imagery which has been used during this research

thus ,

r 2
2

1 
~~~~~~~~~ 2Sz ( w )  ~ 2 1 . 5  I 2 2 H L

( w )  (132)
I a + ‘iir
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2 ]  
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2 
(133)

0. +U)

and

S 2 ( W )  6. 27 2[ 2 2 ][o~ + ~~ i j  H 2 (w ) l  
2 (134)

0. +W

But is 

2 

and f u r t h e r m o r e, for  uncorre la ted color planes

~ 1 ~~~2 = 0ci 
and 0

1 +0 3 
= 0 c2 Thus ,

2 12 0 . 0 2 1 2
2 1 .5  2 2 j I H L

(
~~r

) (135)
0. +~~

12 0. 02 1
s l

( u ) ~~~~4 1 2
~~~~2~~~~~~j I H l (w ) 1

2 
(136)

and

~ 6. 27 2[ 

2~~o~~ ]i H 2 (’~~~ 
2 

(137)
0.

The astute reader will have noticed that the delta func t ion  in

equation (95) has been dropped.  This is jus t i f i ed  by again , as

in Section 6. 7 , by not coding the  ii = 0 te rms .

The method used to cod e in Section 6. 7 is extended to color
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simpl y by using the appropriate  equation for the C-plane being

coded and assi gning bits  by equation (127) with y constant for all

three planes. It should be noted that this p roces s  is only valid

• for C-space  since the power spectrum equations were  developed

for the pa ramete r s  in the G-space conversion. Coding in another

color coordinate sys tem would requ i re  changes in equations (135)

thru (137)

The bit assignment equation was solved for y 4 x  1O 3 and

variances as determined by equations (135) thru  (137). The

bit d i s t r i bu t ion  b etween planes was 1. 3 b i t s /p ixe l  for  C 1, . 6 2  bits !

pixel for  G 2 and . 01 b i t s/ p ixel for  C3 . The GIRL p i c tu r e  was

coded , with  these  comput ed var iances  and bit a ssignments , in the

perceptual domain.  The resul tant  2 5 6 x  256 image  was viewed sid e

by side with the ori g inal on a Corntal d isp lay. It was extremel y

diff icul t  to tell them apart .  Some viewers  had to have the minor

difference pointed out. The di f ference  consisted of a sli ght low

spatial f requency t inge.  This a r t i f ac t  was thoug ht to be a resul t

of the ext r emely low bit ra te  in the G 3 plane. The G 3 plane was

coded to . 09 bits/pixel and used with the previous C 1 and 02 cod ed

planes to obtain a color image with an overall  bit ra te  of 2 b i t s/

pixel. The cod ed image was vir tual ly indis t inguishable  f rom the

• o r iginal .  Several other bit ra tes  (i. e. , di f fe ren t  y ’ s) were  used.

Three of the resu l tan t  color images along with the ori ginal are
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shown in Figure  55. The results  represent  bandwidth compres-

sions of 12-1 to 45-1.

Just as for monochrome images , we would expect an im-

provement in this per formance  by increasing N to 512. This was

most certainly the case.  The color Kodak GIRL was not avai lable

in a S l Z x  512 scan so another image of the same class was

selected. The orig inal of this imag e, ANN , is shown in F igu re

56. This image was selected for two reasons, f i rs t  the f in e

detail in the design on the sweater would tes t  the resolut ion

capabili t ies and second the l a r g e  amount of pure  whit e in the

collar of the blouse should bring out any random color noise.  The

image was coded following the method detailed ear l ier  with

I 2 x  l0 ’
~. The bit d i s t r ibu t ion  was .75  b i t s / p ixel for  C 1

, . 22

b i t s/p ixel for G
~~

, and . 03 bits per pixel for  G 3
. The quality of

this coded image was so hi gh that an experienc ed observer

mistook it for the original when viewing the imag e on the Comtal

display. The NMSE for this image was red = . 13 , green = . 14 ,

and blue = . 38. In order  to obtain an image which was degraded

enough to be apparent  af te r  reproduction several  lower ra tes  were

coded. The images shown in the lower half of F igu re  56 were

coded at • 5 and . 2c b i t s / p ixel.

To establish the uti l i ty of the coding technique , f ive  more

5 12 x  512 color images were  cod ed . These images represented a
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Figure 55. Perceptual Power Spect rum Coded (N = 256)
Upper left: Original
Upper ri ght: 2 b i ts/pixel , NMSE: Red= , 10% , Green= . 18%, Blue= . 70%
Lower left : 1 bi t/p ixel , NMSE: Red= . 20%, Green= . 33%, Blue= . 84%
Lower right: . 5 bi t/p ixel, NMSE: Red= . 43%, Green= . 66%, Blue= 1. 1%

Figure 56.  Perceptual Power Spect rum Coded ANN Image (N = 512)
Upper left : Original
Upper right: 1 bi t/p ixel , NMSE: Red= . 13%, Green= . 14% , Blue= . 38%
Lower left: . 5  bi t/p ixel , NMSE: Red= . 18%, Green= . 19%, Blue= .4 5%
Lower right: .25 bi t/pixel , NMSE: Red= . 26%, Green= . 27%, Blue= . 56%

135 

~~~~~~~- -~~



W~~

Fi gure  55. l-~ r cc -p tua l  P ower  Spect rum Coded (~~ = 2 ~~t )

Figure  56. P -p i n a l  1 ~ow~ r Spect rum Cod ed A N N  Image  ( N  = 51 2 )
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wide variation in subj ect content. They were  all coded at 1 , . 5,

and • 25 bi ts/p ixel .  The ori ginals and cr~ded resul ts  a r e  shown

In Figures 57 thru 61. The 1 and .5 bits/pixel  versions of

these images were  all coded with the same correla t ion and var ianc e

parameters.  They were  comput ed f rom the ANN image. The . 25

bits / pixel images were  coded with the same correlation parameters

and bitmap; however, the normalization prior to Max quantizing

was performed with the spatial varianc e for the respective image.

A question of considerable  interest  is , where are  the coding

er rors  mani fes ted  within the recons t ruc ted  image? This ques t ion

may be answered by computing a d i f ferenc e image. If one subt rac ts

F a cod ed image f rom the original  image and scales and display s

the result; the areas of maximum error  become readily visible.

Three such images and the original  a re  shown in F igure  62.

The colors in the  di f ferenc e image r epresen t  the e r r o r s  in the

red , green , and blue planes. As  in the achromatic case , the

chromatic codin g result s compare favorably with the predicted

perfo rmance (see Figure 31).
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Uppe r left: Original
Upper rig ht: 1 bit /pixel , NMSE: Red .60% , Green= . 58% , Blue=l .1%
Lowe r left: .5  bit/pixel , NMSE: Red= 1 . 1%, Green= 1.0%,  Blue=l .4%
Lower righ t : . 25  bit/pixel, NMSE: Red= 1 . 3%, G r e e n= l .6% ,  Blue=l .9%

Figure 57. Perceptual Power Spectrum Coded LAKE Image (N = 512)

Upper left : Ori ginal
Upper right: 1 bi t/p ixel , NMSE: Red= . 17% , Green= . 19% , Blue= . 36%
Lower left : . 5 bi t /pixel , NMSE: Red= . 24% , Green= . 30% , Blue= . 38%
Lower right: . 25  bit/pixel , NMSE: Red= .46%, Green= . 57%, Blue= .47%

Figure 58. Perceptual Power Spect rum Coded Fl6 Image (N = 512)
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Figure 57. Perceptual  Power Spect rum Coded LA KE Imag e (N 512)

Figure  58. Perc  pi r a l  P o w e r  Spect rum Cod &d F 1~ Image (N = 512)
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Upper left: Original
Upper right: 1 bit /pixel , NMSE: Red= . 57%, Green= . 75%, Blue=l . 2%
Lower left: . 5  bit/pixel , NMSE: Red= 1.0% , Green= 1 .4%, Blue=l .4%
Lower right: .25 bit/p ixel, NMSE: Red= 1.8%, Green=2.2%, Blue=2.0%

Figure 59. Perceptual Power Spectrum Coded BUILDING Image (N=512)

Upper left : Orig inal
Uppe r right: 1 bit / pixel , NMSE: R ed=l .  5%, Greeri=2.0%, Blue=3.2%
Lower left: • 5 bit/pixel, NMSE: R e d = l .9% ,  Gr een=2 . 7% , Blue= 3 .7%
Lower right: . 25 bit/pixel , NMSE: Red=Z. 3%, Green=3. 4%, Blue=4. 3%

Figure 60. Perceptual Power Spe ct rum Coded BABOON Image (N= 5l2)
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Upper left : Original
Upper ri ght: 1 bi t/p ixel , NMSE: Red . 55% , Green= . 44%, Blue= 1. 8%
Lower left : .5 bit / pixel , NMSE: Red= 1. 1% , Gr een= .77%, Blue= 1.9%
Lower righ t : . Z 5  bit/pixel, NMS~~: Red= .9 0%, Green= 1. 1%, Blue=2 . 3%

Figure 61. Perceptual Power Spec ‘~~~ Coded PEPPERS Image (N=5 12)

Figure 62 . Difference Images from ANN Coding Results
(See Figure 56 )
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Figure 61. Perceptual  Power Spect ru m ( oded PFPPERS Image
(N — 51~~)

- .- -

Figure 62 .  Di f f e r 11 ( l n i a g e -  f ron i  A N \  ( - o c ) i n t ~ Re  ~u~t s
(See F i ~~u r e 5~
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SECTION VIII

IMAGE QUALITY MEASURES

A major problem which has plagued image processing has

been the lack of an image quality measure  which matches human

subj ective evaluation. Although several measures  have been pro-

po sed and used , they usually suffer f rom one of two defects.  They

are  either analytically non-tractable or they perform poorly against

subjective evaluations. The next section contains a d i scuss ion  of

several quality measures  which have been used. In Section 8. 2

an image quality measure  based on our model of the HVS is pre-

sented. A psychophysical paradigm , which was used to obtain

subjective evaluations of two data bases (one monochrome and one

color), will be described in Section 8. 3. Then , in the last

section , several image quality measures  are  compared to the

subject ive evaluation of the data bases.

8. 1. Standard Image Quality Measures

One of th e most commonly used quality or d is tor tion  mea-

sures is mean square error (MSE). For the cas e of an N x N

discrete  imag e, MSE may be d efii:ed as
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MSE = [f (m , n) - f(m , n) 1 2 (138)

m 1  n= 1

This part icular d i s to r t ion  measu re  is a t t r ac t i v e  because  it is

tractable and a solution to the p arametr ic  rat e d i s to r t ion  equations

can be found for  it. Unfor tuna te ly ,  MSE does not match human

evaluation on many types of imagery.  It is also poss ib le  to def ine  a

measur e based on MSE and energy normal iza t ion  [27  1. We will

call this measure normalized mean square error (NMSE), and for

an NxN image,

N N
[f (m ~ n) - f (m , n) J

4

m= 1 n= 1
NMSE N (139)

~~~ [f ( m , n) ]
2

m= l  n = l

Normalized mean square  e r ro r  p e r fo rms  somewhat bet ter  than

MSE . It retains the analytic t ractabi l i ty  and is easy to compute.

For these reasons it has gained accep tance  in some c i rc les  and

therefor e it has been used throug hout the ea r l i e r  chap te rs  of this

dissertation.  It should be noted that NMS E can also be defined in

the Fourier domain (FMSE) as,
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M N

~~ IF(m , n) - F(m , n ) 1
2

m= 1 n= 1
FMSE = M N (140)

~~ ~F(m , n ) I 2

m= 1 n= 1

where N is t~ie width and length of the ori ginal image and M=N/2+ l

(recall the complex conjugate  symmet ry  of the Fourier  domain).

A nother common measure  is the normalized d i f f e r e n ce  or

normalized error  (NE),

N N

~~~ I f ( r n . n) - f (m , n)~
m=l n= 1

N E =  N N 
(141)

~~~~

m= l  n= 1

This measure  is pa r t i cu l a r ly appeal ing because  of its s impl ic i ty .

The measure  per forms well for  low intensi ty  levels since incre-

mental changes at low in tens i t ies  a re  more noticeable than those

at hig h int ensities [ 29 , p. 138]. The NE measu re  is not as easily

manipulated as NMSE and for this rea~ on it is not as popular as

~ the la t ter .

Many attempt s at def ining image quality me a s u r e s  a re  based

on some known proper ty  of the human visual  system. One such

measure, Laplacian mean square  e r ro r  (LMSE), is based upon the

Importance of ed ges to the human observer .  This measure  is
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defined as [27  1

N - i  N - i

~~~ [G(m , n) - G(rn n) ] 2

m = 2  n z Z
LMSE = N - i  N - I  (142)

~ ~ 
[G(m ,

m= Z n=2

w h e r e

G(m . n) = f ( m + l , n) + f ( n — l , n) + f (m , n + l )

+ f (m , n - i )  - 4 f(m , n) (143)

L IvIS E p er f or r n —~ wel l  for  images which have  been s eve re l y l ow-pas s

f i l t e r ed . However , it is possible  to g e n e r a t e  seve re ly d e g r a d e d

images  with low spat ia l  f r e q u e n c y  noise  which  a r e  mea~~-~red ‘~~ ood

qual i ty  by LMSE. F r o m  equations (142) and (143) it can  be

seen that  LMS E is not very  t r ac t ab le .

A s imi la r  m e a s u r e  can be obtained by retaining equation

(142) and chang ing  equat ion (143) to

G ( m , ri) = t f ( m + 1 , n - 1)  + 2 f ( m f l , n) + f (m + i , n + 1 )

— f ( m — i , n — i )  — 2 f ( m — 1 , i-i ) — f ( n - i — 1 , n + 1 ) l

+ I f ( m- i , n+ 1)  + Z f (m , n + 1)  + f ( m + 1 , n + 1)

— f(rr i -- l , n — i ) — 2 f ( m , n — 1 ) - . f (m+ I , n — i ) j

(144)

147

-  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-— —--~.



When G(m , n) in equation (142) is replaced by G5(m , n) we have a

form of estimated gradient mean square e r ror  (GMSE) . The

function G ( m , n) is a Sobel operator defined on a 3 x 3 grid (60,

pp. 27 1_27 2 1.  This measure  produces some formidable  analytic

problems.

8. 2. A Perceptual Image Quality Measu re

The observant  reader  has no doubt noticed that GMS E and

LMSE are simpl y NMSE computed in a t r ans fo rmed  space. This

approach to obtaining image quali ty measures  is widely us ed

sinc e the actual dis tort ion measu re  is based on mean square e r ror

and one merely selects an appropr ia te  preprocessor.  What better

preprocessor  could be selected than the HVS model we have

developed ? For the achromat ic  model depicted in F igu re  21 we

can define an achromatic perceptual mean square  error  (PMSE ) as

~~~ [z(m , n) - ~ (rn , n)~~
m= 1 n= 1

PMSEa = 
N N (145)

~~~ [z(m , ) )
2

rn= I n= 1

where z(m , n) and ~(rn , n) a re  given by

z(m , n) = l n f x ( m , r t ) J  ® h
b (m . n)
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and

~(m ,n) = Ln [k( m , n) 1 ® h~~~(m , n) (146)

— The function h
b
(m. n) is simply the rectangular coordinate form of

the point spr ead funct ion  equivalent of equation (93). This

error c r it e r ion  can also be d efined in the Fourie r  domain and in

this case we have

~~~ [Z(m , n) - Z(rn , n ) J
2

m=l  n= 1
FPMSE = 

N N (147)

~~~ [Z(rn , n) ]
2

• m=l  n = i

where

Z(rn , n) y t L n fx (m , n ) f l  H~~~(m , n)

Z(m , n) 3 [ L n [~~(rn , n )f l  . H~, (m , n) (148)

It should be evident that equations (145) and (147) a re  equivalent

- 
- and therefore we will use the term achromatic perceptual mean

square  e r ror  for either case.

In a s imilar  f a sh ion , it is possibl e to define  a chromat ic

perceptual  mean squa re  e r ro r  (PMS EC ). In this  case  we simp ly

compute the NMSE in the L , c 1, and c 2 planes (see F igu re  27 ).

Hence
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PMSE NMSE + NMS E + NMSE (149)c ci c2

where

N N
[t (m , n) -

m=l n= 1
NMSE

L = N N

~~ ‘S [L(m,n)] 2

rn= 1 n= 1

N N 2‘S~ S [c~~
(m , n) - c

1(m , n) ]

m= I m= 1
NMSE =ci 

~~~ [c 1(m , n ) J
2

m= lm= 1

N N  2

~~~ ~~ 
[c~~(m , n) - c~ (m , n) ]

m= l  n = I
NMSE 2 N N (150)

~ ‘S [c 2 (m , n ) ]
2

m= 1 n=l

The three expressions in equation (150) also have Fourier domain

equivalents. Thus, the color counterparts of equation (148)

become

L(m, n) = 2 1. 5  .7[Ln [t 1(m , n)j )  Hf (m~ n) (151)

C
1

(m ,n) = 41 .7[Ln [t 2 (m , n ) / t 1
(m , n)]) H

1
(m ,n) (152)
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and

C
2

(m , r i)  = 6. 27 7[L n [t 3(m , n ) / t
1 (in , n) fl H 2 (m , n) (153)

Of course, the coded versions L(m , n) ,  C 1(m, n) .  and C2 (m , n) a re

similarly defined. The quantities t
1
(m,n), t

2
(:n,n), and t

3
(rn ,n)

are obtained from the RGB to T-space conversion d efined by

equation (23)

8. 3. An Achroma ti c  Sub jec t ive  Image Qual i t y Experiment

The ultimat e image quality measure  is a subjec t ive  evaluation.

This type of m e a s u r e  is not wi thout  c i p itfal ls  Indeed , what is an

important d i f fe renc e to one observer  may go unnot iced by another .

A re l iable  experimental  resu l t  r e qu i re s  a l a rge  number  of subjects

of a Icjud ic ious h mix . They should be selected with the overal l

obj ective in mind. For examp le , to evaluate  normal  image  viewing

quali ty the observers  should have a wide mix of back ground and

experienc e. On the other hand , if one is developing a specialized

image measure  such  as a texture measure, the observers should

probably be f ami l i a r  with this  area.  Sinc e we a re  concerned with

viewing quali ty,  we will attempt to use unbiased obse rve r s  with

various backgrounds.

Another  problem which is encountered  is that  of select ing the

actual evaluation procedure.  T h e r e  a r e  two genera l  types of

151 
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subjective evaluation. In one, absolute evaluation , observers are

shown an image and asked to rate it according to some pre -defined

scale. The other , com parative evaluation , simply requires  the

observer to rank a set of images f rom best to worse.  Extensive

work has been done in the methods for scaling images , or the

absolut e evaluation method , part icularly in eval uating t elevision

quality [61]. The rank order ing type  of evaluation is more  suitable

to di gital image processing and it is a fairly quick and easy test

to perform. An additional favorabl e aspect is that it requi res  no

training or familiarization tasks . The observers  can be completel y

ci flaive ic in this respect.

A conveni ent implementation of the comparat ive  evaluation

involves a type of “bubble  sort. This method requi res  the

observer to mak e a forced choice between two images. The

chosen or best image is alway s retained for the next comparison

until the set of images has been exhausted . The r emaining image

is ranked one and removed from the set. The procedur e is re-

peated to find the second ranked image, e tc . ,  down to the N~~~

rat~ked imag e. This particular protocol has been used successfully

by Mannos and Sakrison [71 and it is th~ evaluation technique

selec ted for our experiments.

The monochrome data set was obtained by coding the 256x 256

low noise scan of the GIRL picture.  The image was cod ed to 2 ,

isa 
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1.0 , .75 , and . 5 b i t s / pixel with an 8x 8 and a 16 x 16 block cosine

coder. In addition , it was coded to 1, . 5, .25 , and . 1 b i t s/ p ixel

with the perceptual power spectrum coder. The twelve images

were stored in digital fo rm on a hig h speed disk. The images

were displayed in pairs , diagonally opposite (i. e. ,  quadrants  2 and

4), on a Comtal monitor. A PDP- l 1/40  was used to control  the

disk and accomplish tr ans fe r  b etween the disk and monitor .  The

images were transferred sequentially to either quadrant . This

enabl ed the rejected image (the worst image of a pair)  to be re-

placed by the next image in the set. With this ar rangement  66

pairings were required to order the entire set of 12 images.

The observer  was s eated in f ront  of the monitor at a dis-

tanc e which gave a 6° viewing angle for a 256 x 256 image . This

distance was selected to be consistent  with the scaling fac tor  which

was used in the f i l t e r  equations of the HVS processed images.

The lighting within the viewing room was subdued and the average

brightness of the display was approximately l5mL or 48 cd/ in
2
.

After  all of the individual rankings were  obtained an overall

ranking for the group of observers  was obtained by a weight ed

av erage. This average was defined by

R. = 

~~ 

n .. (154)
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where M is the number of trials , R~ is the weighted average  rank

. th . . . . th .
of the i image , and n .

3 
is the rank assigned to the t— image

during the j~~ tr ial .  Table 4 contains the final  rankings for  the

achromatic data set .

8.4. A Chromatic  Subjective Image Quali ty Exper iment

The general  methods outlined in the previous section were

used to subjectivel y evaluate a set ten color images.  In this case

30 2 56x  256 image files were required . The color data set con-

tained only ten images sinc e the hig h speed disk  could not s tore

12 color images.  Since t h r ee  t imes  as much data was required

for a complete image , the t ime  requ i red  to d i sp lay an image and

the total t ime requ i red  to eva lua te  the ent i re  data  set was

lengthened considerably.

The color image used for coding was the 2 5 6 x  256 color

GIRL. The image was coded in the YIQ and Lab spaces with a

block cosine coder .  For the YIQ conversion , a 16 x 16 blocksize

and rates of 2 , 1., and . 5  b i t s / p ixel were  used dur ing  coding. An

8x 8 blocksize coder at the same rates was used to cod e the Lab-

space. The image was also cod ed with the  perceptual  power

spectrum coder at rates of 2 , 1 , . 5 , and . 25 b i t s / p ixel.

The above set of ten color images was sub ject ively  evaluated

by observers  and the r e su l t s  w e r e  averaged by using equation

154
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TABLE 4

SUBJECTIV E RANKINGS FOR ACHROMATIC IMAGE SET

Image Blocksize Rate (bi ts )  Subj ective Rank

1 16 2 3

2 16 1 5

3 16 .75  7

4 16 .50 10

5 8 2 1

6 8 1 6

7 8 .75  8

-
- 

8 8 .50  11

9 256 1 2

10 256 .50 4

11 256 .25  9

12 256 .10 12

155
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(154). These average rankings are tabulated in Table 5.

8. 5. Computed Image Quality Experiement

The two image data sets generated for the experiments  of

Sections 8. 3 and 8.4 were  ranked by the er ror  between each of

them and the ori g inal image. Minimum error  was ranked one ,

second smallest  two etc . ,  until the larges t  e r ro r  was ranked

twelfth. The monochromatic  e r ror  computations were  per fo rmed

with the equations def ining PMSE -- equations (145) and (146).

For the color images the equations

NMSEc = NMSE
R + NMSE

G + NMSE
B 

(155)

and

LMSEc = LMS ER + LMSE
G + LMSEB 

(156)

along with equation (149) for PMSE were  used to rank the data

set.

The resu l t s  of these  computat ions  a re  shown in Tables 6

and 7. The subj ective ranks have been included for compara t ive

purposes. From Table 6, the co r r e l a t i on  between PMSE and the

subjective ranking of the achromatic  image set is hi gher than that

of NMS E and LMSE. For a data set s ize  of 12 the conf idence  level

of the corre la t ions  is g rea te r  than 99. 9%.  Thus , the PMS E is

definitely the bet ter  dis tor t ion measure  for  this data set. It should

156



TABLE S

SUBJECTIVE RANKINGS FOR CHROMATIC IMAGE SET

Image Blocksize Color Space Rate (b i t s )  Subjec t ive  Rank

1 256 Gcube 2. 00 1

2 256 Gcube 1 . 00 2

3 256 Gcube . 50 6

4 256 Gcube . 25 9

5 16 YIQ 2 .00 4

6 16 YIQ 1. 00 5

7 16 YIQ . 50 10

8 8 Lab 2. 00 3

9 8 Lab 1 . 00 7

10 8 Lab . 50 8

-
I
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TABLE 6

COMPUTED AND SUBJECTiV E RANKINGS FOR
ACHROMATI C IMAGE SET

Image NMS E (%) LMSE (%) PMSE (%) Subject ive  Rank
__________ __________  

( S . R . )
1 . 27 60 3 .2 3

2 .43 81 5 .4 5

3 .51 89 6 . 1  1

4 .67 100 7 .8 10

5 . 28 64 3.0 1

6 .43 89 4 .6 6

7 . 57 100 6 . 1  8

8 .83 133 8 .6 i i

9 . 26 75 1 .2 2

10 . 42 85 2 .5 4

11 . 73  93 5.0 9

12 1 . 55 99 9. 1 12

Corr  elation

to S.R. . 85 .84 .92
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be noted that  this  test  was a severe  one in the sense that t h ree

types of noise were  c ontained in the images;  Gauss i an , 8 x 8

blocking e r ro r s , and 16x  16 blocking e r ro rs .  To the author ’ s

knowled ge , comparable  tes ts  have not been per formed.  P r e v i o u s

subject ive  t e s t s  have dealt with a sing le type of noise  (usua l ly

Gaussian) .

The cor re la t ion  r esu l t s  f r o m  the chromat ic  exper iment  a r e

not as c lea r -cu t  as the achromatic  case. The NMSE cor re la t ion  to

subject ive  rank is slig htly higher  than PMSE c o r r e l a t i o n  to sub-

j ec t ive  rank ( see  Table ~ ). LMSE is defini te l y infer ior  to NMSE

and PMSE. Four types of co r re l a t ion  were  computed on the

chromat ic  data set. The f i r s t  was the s t andard  c o r r e l a t i o n  co-

ef f ic ien t  defined as the covar iance  divided by the p roduc t  of the

s tandard deviat ions ,

C
p = 

X~~ (157)
xy ~~~Gx y

where x was the vector of actual errors measured and y was the

~ subject ive  rank vec to r .  Ranks we re  also assigned to the images

- 
-

- accord ing  to minimum e r ro r  under each measure .  Equat ion  (157)

was then used to compute  the  cor re la t ions  between rank o r d e r i n g s .

The last  two m e a s u r e s  have been spec i f i ca l l y developed for  ‘ ranked

data .  The Spea rman  rank co r re l a t ion  c o e f f i c i e n t  is de f ined  as

159
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TABLE 7

COMPUTED AND SUBJECTIVE RANKINGS FOR
CHROMATIC IMAGE SET

NMSE LMSE PMSE Subject ive
Image Rank

Percent Rank Percent Rank Percent  Rank (S. R . )

1 1.00 1 211 1 11.02 1 1

2 1.37 2 250 2 13.64 2 2

3 2 .19  5 279 3 19.85 4 6

4 3 .82 9 292 5 29.44 9 9

5 2 .13 4 302 6 20.40 5 4

6 3.32  7 403 8 27 .45  7 5

7 5. 26 10 562 10 40. 37 10 10

8 1.67 3 280 4 17.08 3 3

9 2 .62  6 342 7 2 1. 9 3  6 7

10 3 .74 8 410 9 2 7 . 9 3  8 8

Corr elation
to S. R. .92  .96  .74 .76  .90 .94

Spearman
Rank
Correla t ion . 96 . 76 . 94

icendall Tau
Coeff ic ient  .91  .73  .87

160
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r = 1 — (158)
N ( N - 1 )

where the D. are pairwise d ifferences and N is the number of

ranked images ~ 
62 pp. 245-249 1. The Kendall  tau c o e f f i c i e nt  or

r statistic is defined as [62  , pp. 249-25 2 ]

- 
(number of agreemen ts)  - (number  of d i s a g r ee m e n t s)

K total number of pairs

(159)

The four  types of co r re la t ion  were  computed on the ch romati c

resul ts  and they a re  tabulated in Table 7 . It should be noted

that the chromat ic  experiment  was even more  d i f f i cu l t  than the

achromatic experiment  since t h r e e  d if fe ren t  color spaces  w e r e

used in obtaining the image set.

4
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SECTION IX

SUMMA RY AND CONCLUSIONS

The pr imary  thesis  of this research was that mod els sui table

for dig ital image processing — and in part icular  color image band-

width compression -- could be developed f rom the basic character is -

tics of the human visual system. This hypothesis has been demon-

strated and the theoret ical  and pract ical  implications a re  summa-

rized in the next section. The conclusions which can be drawn

from the resul ts  of this work are  also d iscussed  in Section 9. 1.

In the last section several  recommended areas for  fu ture  r e search

are pointed out.

9. 1 Summary and Conclusions

It has been demons t ra ted  that simple mathemat ica l  models

can be developed f rom the physiological  and psychophys ica l  t ra i t s

of the HVS. These  mod els were  shown to be analytically t ractabl e

*nd expressions for  their  s tat is t ical  charac te r iza t ion  were  obtained.

Given a s tandard  image model , the output power spectrum of an

a h r oma t i c  and a ch roma t i c  model were  derived.  These power

~~. ‘ t r u m  express ions  were  used to cod e black and white and color

d ~~~~ t~) r *t ~~s lower than that previously achieved.  In

l~~2
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addition , the outputs of the models were shown to be stat ist ically

compatible  with the basic assumptions necessa ry  to obtain a solution

for the parametric rate  dis tor t ion equations. Those equations were

solved and ra te  versus d is tor t ion  cu rves  which demons t ra t e  the

near optimality of the coding a lgor i thm were  present ed.

The utility of these models as a p rep rocesso r  for  image qua-

lity measurements  was also demonst ra ted . It was shown that nor-

malized mean square error  is an effect ive d is tor t ion  measure  when

applied to the preprocessed  images . The combiflat ion of NMSE and

the HVS preprocessor  was refer red  to as perceptual  mean square

error ( PMSE). A subject ive  evaluation of twelve monochrome and

ten color images indicated that PMSE is a valid image qual i ty

measure.

One can conclud e f rom this work that  what has been conj ec-

tured previously is t rue.  The HVS can be used to develop very

effect ive p reprocessors  for image systems.  Moreover , with a few

simplif y ing assumptions , these mod els can be analyzed and ef f ic ien t

algorithms for image bandwidth compression and quality measure-

~~ ment can be obtained.

9. 2 Recommended Fu tu re  Work

Several a reas  which may be f ru i t fu l  f u t u r e  r e s e a r c h  topics a re

apparent .  One area of p r ac t i c a l  impor tance  would be the app l ica t ion

163
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of the techniques us ed to obtain the power spectrum equations for

our HVS model to the YIQ and Lab color -coordina te  spaces. If the

analogous expressions a re  obtained , par t icular ly  for  Lab space ,

bandwidth compressions similar  to those obtained in this work

should be possible.

Another area  along these l ines is to use the power spectrum

equations tc cod e in the cos ine  domain . It is real ized that the co-

sine domain is not a t rue  f requency plane ~~~ se; however , the re

is reason to believe this approach would prove f ru i t fu l .  A key in-

gred ien t  of the success fu l  coding in this  d i s se r t a t ion  has been the

c i rcular ly symmetr ic  bitmaps and this  symmetry  can be produc ed

in any frequency or sequency domain with the appropr ia te  “power

spect rum” equation.

The basic a lgor i thm can also be simplified by e l imina t ing  the

f i l ter ing operat ion.  Sinc e the spatial  f i l t e r  is an i n t eg r a l  part  of

the power spec t rum expression and bit allocation is de te rmined  f rom

this expression , a type of f i l te r ing  is being per formed in the quanti-

zation process . Of course , with the cosine t r a n s f o r m , this would

give a very simp le a lgor i thm with def in i te  rea l  t ime p roces s ing

capabilit ies.  The next step would be to stud y the block s ize pro-

blem. It could very well be that a l 6 x  16 or 32 x  32 block cos ine

coder can be implement ed with the power spect rum bit a s s ignment

technique.

164 
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One very obvious area for further work is that of image

quality measures. The subj ective experiments performed during

this research were very superficial .  The resul ts  were certain ly

encouraging; however , many more images f rom several  classes

need to be processed b efore any definit ive comparisons b etween

PMSE, NMSE, GMSE , LMSE, or any other image quality measure-

ment can be made.
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APPENDI X A

SOME PHYSIOLOGICA L PROPERTIES OF TH E

HUMAN VISUAL SYSTEM

As pointed out in Section 1 , a primary goal of this r e s e a r c h

Is to obtain quant if iable  mathematical models of the HVS which are

applicable to image coding. To work toward this end we must have

some basic knowledge of the physiology of the HVS. The HVS

models of Section II wer e developed based on the physiological

properties discussed in this appendix. B efore beginning let us

consider  what we mean by the human visual system. Throug hout

this r e sea rch  we will consider the eye , the optic tract , the la teral

geniculate bodies and those port ions of the s t r i a t e  (or visual)  cortex

which do not involve cognition to be the HVS .

A horizontal  section of a right eye is shown in F i g u r e  A. 1.

Light enters  throug h the cornea and passes through the an t e r io r

chamber to the i r i s - lens  s t ruc ture .  U pon exiting the lens , the light

travel s through the v i t reous  humor to the retina where  it excites

the photoreceptors  which in tu rn  convert  these  visible electro-

magnetic radiat ions to a type of f requency modulated signal. This

electrical act ivi ty is passed via the optic nerve , through the optic

chiasm to the la tera l  genicula te  bodies (LGBs) .  From the LGB ,
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168 

—- -~~~~~~ -- - ~~~-— ---- —— - -———-----



- ~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _

the visual data passes to the occipital lobe region of the bra in

which contains the visual cortex . Throug h this pathway the ori ginal

visual field of view is t ransmit ted  and mapped conformall y onto

area 17 of the s t r ia te  cortex. Let us now consider F igu re  A. I in

detail.

A . 1. The Ocular Optical System

The outer coat of the eye, the sclera , is pro tec t ive  in func-

tion [63  1. The sciera (sometimes re fe r red  to as the “white ” of

the eye) is opaque except for  the cornea , which is a t r a n sp a r e n t

protuberanc e centered on the optical axis. The cornea has a re-

fractive index of approximately 1. 3771 and the  aqueous humor (con-

tained in the anterior  chamber)  has a re f rac t ive  index of 1. 3374

[ 
22 , p. 2 10]. The a i r- co rnea -aqueous  humor in te r face  resu l t s  in

a len s power of 42 diopters which is approximately 2/ 3  of the total

power of the eye. The remaining 1/3 is a result  of the “crystal-

line” lens which has a refract ive  index of 1.42 r ib id l . Sinc e the

refract ive ind ex of the vitreous humor is 1 • 336 the di f ferent ia l  index

in the aqueous humor-lens-vi treous humor interface is lower than

that of the corneal in ter faces , henc e a lower power . The crystal-

line lens is the most important element in the lens system however .

This is because it is nonrigid and the shape and re la t ive  curva ture

of the two faces can be altered by the ciliary muscles . This action ,
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called accommodat ion , insures  that the image is broug ht into focus

at the ret ina , r ega rd le s s  of the d i s tance  of the object f rom the eye.

The image which is f inal ly formed on the ret ina is inverted (an up-

side down mi r ro r  image) .

The process descr ibed  in the previous pa rag raph produces  a

focus ed image on the re t ina , however , it does not control  the int en-

sity of this  image. This is accomp lished by a c i r cu la r  opening,

the pup il , which is formed by the i r is.  The i r is  can adjust the

diameter  of the pup il f r o m  2mm to 8mm (or an area  va r ia t ion  of

16 to 1), thus , controll ing the amount  of lig ht pass ing  f r o m  the

anter ior  chamber , throug h the lens , and into the vi t reous chamber .

The pigment ed epithelium adjacen t  to the radial and c i r cu la r  mus-

d e s  of the i r is  gives the eye its cha rac te r i s t i c  color (blue , green ,

or brown) . Sinc e aber ra t ions  in the dioptr ic  system ar e  the

greatest  in the peri phery  of the cornea and lens , pup illary con-

str ict ion improves the quality of the image formed on the ret ina.

Unfortunately,  this act ion also decreases  the resolut ion of the opti-

cal system throug h d i f f r ac t ion  effects .

The resolving capability of any incoherent optical ins t rument
I-

is limited ul t imately by the ef fec ts  of d i f f r ac t ion  [64  , pp. 129- 1311.

The Rayleigh criterion of resolution states that two incoherent point

sources are  “barel y resolved” by a d i f f r ac t ion- l imi ted  system when

the brig ht c entral  core  of one A i r y  disk fa l ls  on the f ir s t  dark
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band of the other. This geometry is shown in Figur e A. 2 for  a

one-dimensional case. The min imum resolvable separation of the

two point sources becomes

6 = 1. 22 —h— (A . 1)
d0

where X is the wavelength of the sources and d
0 is the d iameter  of

the image-forming lens (i. e .,  the pupil d iameter ) .

Riggs [ 
65 , pp. 333-334] has shown that visual acuity remains

fairly constant as the pupil increases  f rom 2. 5mm to 5mm. This

resul t  indicates  that within this r ange , the Ray leig h l imit  and optical

aberra t ion effects  a re  balanced . The visual acuity of the total  sys-

tem involves other pa ramete r s  however.  We will  rev is i t  this sub-

ject  in more detail la ter .

There  is one type of aber ra t ion  in the optical system of the

eye which is measurable  on axis , chromatic aber ra t ion .  Since the

refractive indexes of the ocular media are wavelength dependent ,

the optical power of the eye exhibits this dependence . If the image

of a distant point source  emitting all wavelengths is located on the

optic ax is and produces a focused image on the ret ina for  a re-

— f e rence  wavelength X 0 , then shor ter  wavelengths  will image in f ron t

of the ret ina and longer wavelengths  behind the  re t ina . If the re-

fe rence , X~~, is set at the peak sensi t ivi ty wave leng th  f o r  color

sensi t ive photorec eptors (— 578n rn , a yellow), then var ia t ion  in optic
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power ranges  f rom +. 62 diopters  for  750nm ( r e d )  to -2 . 63 diopters

for 365nm (violet)  [ 22 , pp. 2 1 1-2 12 ] .  As  can be seen , the blue

end of the spec t rum has the l a rges t  var ianc e in lens power. This

implies the re  is more  “defocus for  the blue end of the spec t rum

and henc e less resolu t ion .

In the previous p a r a g r a phs of this sect ion we have br ie f l y

covered the opt ical  sys tem of the eye. This system is linear and ,

even though it is spatially and temporally var iant  and inhornogeneous ,

one can model the system quit e accurately [ 
1, p. 162] ,  [ 

66

In the next element of the ocular  system , the re t ina , we not only

encounter complex inhomogeneit ies and in te rconnect iv i ty  pa t t e rns .

but nonl inear i t ies  as well.

A. 2 The Retina

The retina is a mul t i - layered s t ruc tur e which  lines the in-

ter ior  of the rear  wall of the eyeball. It extend s about 100° on

either side of the optic axis. The photoreceptors  a r e  located at

the very back side of the ret ina .  This means that  lig ht must  pass

through the optic nerve  f ibe r s , and other n e u r a l  layers  of the re-

tina , b efore reach ing  the pho torecep tors .  This type of s t r u c t u r e

is refer red  to as an inverted eye. Figu: e A.  3 i l l u s t r a t e s  the basic

structur e of the re t ina .  The chorioid layer and p igment  cel ls  ab-

sorb any li g ht which has passed th roug h the en t i r e  sys tem and has

172

~ 

..~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —

Periphery Fovea Light

~~~~~~~~~~

— ~~~~~~~~~~~~~ dl~~
__

~
____Ganglion Cells

I 

• f (
~~ 

,) Amacrine Cells
j  .~~__.— Bipolar Cells

T , ? ~ 
Horizontal Cells

- 

_ _ _ _ _ _y 4 Rods and Cones

~~ Pigment Cells
~ 1 L ~T.~- -4 Choroid

Figure A. 3 St ructure of the Human Retina

e 240C I nodS 1.2
E — — C o n e s
g — — - — — Visu a l ocu ity

!4Q~~(

”

~

” 

4

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\S

%

\)
~ 

.

~

.— - ., ‘.. 
- —--.- .

,~ — ----~~~~r-  
— 

1-—-~~-—--- t --_ 080 60 40 20 0 20 40 60 80
Nasol Fovea Temporal

Degrees f rom t he fo vea

Figure A . 4  Di st ribution of Rods and Cones

173

- ~~~~~~~~~
- -- —- -

~~~~~~~~~~~~~
-- - -- -

~~~~~~~ ~~~~~~~~~~~~ ----— - - -- ---~ - -~~ -- - - -



- - --

not been absorbed by the photoreceptors .  This action min imizes

stimulation of the r ecep tor s  by s t ray  or ref lec ted  lig ht which would

r educe the resolut ion and con tras t  sensi t ivi ty  of the system.

The outermost  neura l  layer of the ret ina contains the photo-

receptors .  The receptors  (thin rod- or cone-shaped s t r u c t u r e s )

a r e  ar ranged with their  lig ht sens i t ive  ends point ing away f r o m  the

lens. The next neura l  layer  contains the bipolar  cells. These  cell s

make contact  with the r ecep to rs  throug h the bipolar cell dendr i t e s .

The bi polar axons synapse  with the  gang lion cells which f o r m  the

inner neurona l  layer  of the retina. The axons of the  gang lion cells

- - a re  gathered into the optic ne rve  at the optic d isk  which is located

about 160 nasal l y f r o m  the optic axis. In this area t h e r e  a r e  no

pho to recep to r s  and a “b l ind-spo t”  r e su l t s  in the visual  f ield located

16° temporal ly f r o m  the optic axis.  In addi t ion to the  sequent ia l

or vert ical  s t r u c t ur e  jus t  desc r ibed  the re  a r e  two l a t e ra l  sys tems

of neurons .  The h or izonta l  cel ls  fo rm in t e r connec t ions  between re-

ceptor cells.  The amacr ine  cells  synapse wi th  each other , with

gang Uon cells and with proximal ends of bipolar  cells.

F igure  A. 3 i l lus t ra tes  two separate  a reas  of the re t ina.  One

area is a rod f r e e  area .  N ote  that  within th is  area the cor respon-

denc e between recep tors , b ipolar , and gangl ion  cells is one- to-one .

The rod f r e e  area  of the re t ina  is a c i r c u l a r  a r e a  of 500-600~ in

d i a m e t er  cen te red  on the optic axis.  This  a r ea  is cal led the fovea
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c entra ij a and it subtends 1. 7° to 2 , 0 of the visual field. There

are 110 , 000 to 115 , 000 cones within this area . A smaller portion ,

the foveola (the inner 400k diameter circ le)  is the most densely

pack ed area and contains about 25 , 000 receptors . Outside the fovea

J centralia cone densi ty begins to fall off rap idly and rod density be-

gins to build up. A density profile for rods and cones and a rela-

tive acuity curve a re  shown in F igure  A.4 .  There  are  approxi-

mately 6 .5  million cones and 125 million rods in the ret ina . The

optic nerv e contains about 1 million gangli on axons . There is a

one- to-one in te rconnec t iv i ty  between — 1 0 0 , 000 of these  gang lion cells

and the cones in the fovea centralis. As a result , a 145 to 1 data

r eduction process  must  tak e place in connect ing the remain ing  131

million receptor  outputs  to 900 , 000 optic ne rve  channels . Thus ,

the relat ive acui ty  cu rve  shown in Fi gu re  A. 4 is a funct ion of re-

c eptor density and in te rconnec t iv i ty  (neura l  summat ion ) .  K a b r i s ky

[ 
67 , p. 18] has likened this  a r rangement  to looking th roug h a p iece

of f ros ted  glass with  a t r a n s p a r e n t  spot in the c enter .  We a r e  not

cognizant of the loss in acuity sinc e the clear  spot is a lway s den-

tered on where we are looking. If we consider the center-to-center

spacing b etween cones in the fovea c entra l i s  (2 to 2. 3k), the  cor-

responding subtend ed angle is 25 to 29 seconds.  This is equivalent

to approximately 60 cy c l e s/ d e g r e e  subtend ed . As indicated pre-

viously, pupil d i ame te r s  of 2 . 5mm to 5mm maintain relatively
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constant acuity. Campbell and Gubisch 168] have shown that the

optics  of the eye prod uces the best  image for  a pupil  d i a m e t e r  of

Z .4mm. A rec ent paper  by Synder  and Mil ler  [6 9  1 d e m o n s t r a t e s

that the theo re t i ca l  op t imum recep to r  packing with  a 2 . 4mm pupil

g ives an angula r  spacing of 27. 4 seconds ;  h en c e , the sys t em appears

to be cons i s t en t .  Thus f a r  we have c o n s i d e r e d  only the bas ic  ana-

tomical  a r r a n g e m e n t  of the ph o t o r e c e p t o r s  wi thin  the  r e t i na .  We

will now d i scuss  t he  func tiona l  r e l a t ionsh ips  of t he se  r ecep to r s .

The two types of r ecep to r s  d i f f e r  by m o r e  than  the i r  phys i ca l

shape and s ize.  The rod s c on t a i n  a pu rp le p i g m e n t , rhodops in .

which has a peak spec t r a l  a b s o r p t i o n  at 505nm (wi th in  the g r e e n

sp e c t r u m ) .  When g r e e n  lig ht is absorbed  s e v e r a l  chemica l  r e a c t i o n s

take place wh ich  c o n v e r t  the  rhodopsir i  to re t iner i e and a p ro t e in

called scotopsin.  If enoug h li g ht is a b s o r b e d  the  r e t i n en e  is f u r t h e r

bleached to co lo r l e s s  v i t amin  A.  Rhodopsin is con t inuous l y r e sy n -

thes ized  f r o m  sco tops in  and v i t a m i n  A or r e t inene .  In comple te

da rkness  all of the scotopsi ri  may be conve r ted back  to r h o d o p s i r .

Prote ins  s imi la r  to s co tops in , pho top s ins , a r e  found in L o n e s .

The cone pi gments  w h i c h  p r o d u c e  pho tops ins  a r e  p robabl y of t h r e e

types .  These  pigments  appear to a b s o r b  li g ht maximal ly at 440nm .

535nm , and 565nm f 70 , p. 330] . The actual  p igmen t s  and pro-

te ins  have yet  to be comp letel y i so la ted  f r o m  the  human  r e t i na .

The spec t ra l  s e n s i t i v i t y c u r v e s  shown in Fi g u r e  A .  S w e r e  ob ta ined
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with reflection densi tomet ry  measurements  on sing le receptors  f r o m

excised human ret inas  [ 70 , p~ 332] .

It seems clear  that cones a re  important  for  color vision , and

indeed , color sens it iv i ty  falls off outside the fovea where  con e den-

sity is decreas ing . However , the rods , when adapted to the dark

so that large concent r ation s of rhodopsin are  presen~, a re  much

more sensi t ive to whi te  light than cones. Thus , in dim lig ht our

vision is pr imar i ly depend ent on rods and , as a result , colors

appear as shades of gray.  This type of vision is re fer red  to as

scotopic , or dark  vision. When the light in tens i t y is h igher  (as in

dayli ght) the rhodopsin of the rods is almost entirel y bleached out ,

thereby render ing the rods inef fec tive , making day li ght (or photop ic ) ,

vision a cone niechanism. If the spectral sensitivi ty cu rves  fo r  the

dark adapted and day li ght adapted eye a r e  measured , one obta ins

curves similar to F igure  A. 6 { 17 p. 1461. Note how the scoto-

pic (rod) curve  peaks at about 505nm versus  555nrn for  the photopic

(cone) curve.  This shift in the position of the peak is r e f e r r ed  to

as the Purkinj e shif t .

The preceding may be summed up as follows . The ret ina is

not a ti ght sensitive transducer of constant properties. It contains

two receptors:  the day receptor , which involves the whole s u r f a c e

of the ret ina and func t ions  at high luminous  levels with a spectral

nensi t iv i ty  defined by the photopic c u r v e  shown in Fi gure  A . 6; and
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the night receptor , which functions when the eye 18 da rk ada pt ed

and is character ized by the scotopic curve in Figure  A. 6. The

rods (night receptors) a re  almost completely absent f rom the fovea

region where the cone (day receptor)  density is highest.  The cones

appear to be totally responsible for color vision. This duality of

the retina is sometimes referred to as the duplicity theory f 71

p. 387).

The minimum threshold for  the rods appears to be one quan-

tum of light whereas  for the cones it is four or five quanta. Onc e

the minimum threshold is exceeded the chemical processes pre-

viously mentioned take place. By some unknown mechanism the ab-

sorption of li ght and resultant chemical reaction produces an

electrical response in the receptors  that is t ransmi t ted  to the bipolar

cell.. UnIortunately, it is not possible to monitor these signals at this

point. The individual  funct ions  of the neur onal  layers of the re t ina

can only be conjectur ed. It is known that the re  is a nonlinear

funct ional  re la t ionship between the nerve impulse output at the

gang lion axons and the unpinging lig ht [ 1 , p. 163]. The functional

form of this no~ili n ear i ty  remains an issue r 72~~~75~ and 134~ .

debate c enters on whether the functional form of the nonlinearity

is logari thmic or a power law . The exponent range in the power

law argument Is u sual l y . 29 to . 35 or approximately cube root.

These two forms are nearly equal over a 1 to 100 range  and the
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logarithm is bound by the . 29 and . 33 curves out to about 600.

In fact  the d i f fe renc e between the . 29 power curve and the logarithm

curve at 1000 is less than 7% (see Figure A. 7). The problem with

this comparison is, “how should the data be scaled? ” If one uses

quanta of light to measure intensity then obviously w e would be well

beyond the range of close agreement. If we use trolands as our

unit of measure  ( 1 troland = 1 cd/rn2 ill uminating a 1 m m 2 pupil

area) ,  then we are within the 1 to 100 range for most experimental

data.

One of the pr imary  resu l t s  of the nonl inear i ty  ( r ega rd l e s s  of

the exact functional form) is the compression of the dynamic rang e

of the input intensity. This results in a system which can handle

light intensities over a range of 10 billion. Compared to the 16 to

I ar ea variation in pupil size we see that the main intensity com-

pensation mechan ism occurs  in the photoreceptors. In fact , the

pupilary response is t ransient  in na tu re , always r e tu rn ing  to approx-

imately the same size a f te r  the photor eceptors  have “ adapt ed” to

the chang e in i l lumination.

A. 3. The Lateral  Geniculate Bodies

The “coded” visual information exits the re t ina  by propagat ing

down the ganglion axons ( the  optic nerve)  to the optic chiasm. At

this point the optic nerves f rom both eyes decussa t e  and the s igna l s
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f rom the left half of the retina (w . r. t. optic axis) of both eyes pro~

ceed to the left  la tera l  geniculate  bod y (LGB).  Similarly, the r ig ht

half of the re t ina  of both eyes provides si gnals to the r ight  LGB.

Sinc e the retina e a re  stimulated by inverted images of the visual

field , the left f ield maps to the r ig ht LGB and -lice versa .

Until recent ly, the funct ion  of the LGB ’ s was thoug h t to be of

minor consequence to the actual process ing  of the  visual  image it-

self. A common argument  was that the input axon count and output

axon count f rom the LCD to the pr imary visual  cortex was essen-

tially the same and t h e r e f o r e  l i t tle  process ing  of data was o c c u r r i n g

in the lateral geniculates  [ 67 , p. 25 }. DeValois  et al. , have re-

cently studied color  cont ras t  effects  in the LGB of the monkey [76].

Their results indicate the presence of several types of cells within

the LGB which receive the basic tristimulus spectral outpu t s  of the

photoreceptors  and p roduce  compound signals . The y found spec t ra l ly

nonopponent cells which respond to all wavelengths with either an

inc rease  or a dec rease  in f i r i ng  ra te  and spect ra l ly opponent cells

which respond with an increase  in f i r ing  rat e to some areas  of the

spec t rum and a dec rease  to other  areas .  Four types of opponent

cells were  found: red excitatory and green inhibitory (+ R - C),

green exci tatory and red inhib i tory  (+ G - R), yellow exci ta tory

and blue inhibi tory (+ Y - B),  and blue excitatory and yellow inhib i tory

( + B  -Y ) .  The nonopponent  cells appear to t r a n s m i t  br ig h tnes s
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information, whereas the opponent cells code the color information.

A 4. The Visual Cortex

The visual signals proceed from the LGB ’s to area 17 of the

striate cortex which is located in the occipital lobe areas of the

brain. The data appears to map con.formally onto area 17. In-

vestigation of the spectral sensitivity at this point indicates that the

observed color opponent interaction is established at earlier levels

of visual processing [77]. This finding indicates the spectral

processing is occuring almost entirely within -- or prior to -- the

LGB ’s. Several other neurological investigations of the pr imary

visual cortex have been made which relate to the spatial content  of

the image.

The most noted experiments have been those of Hubel and

Wiesel [78]-[81]. Early experiments by K uffler [ 82 ] demon-

strated the existence of concentric r egions within the retinal mosaic

which have on and off centers. These two types of st ruc tu res  pro-

duce a type of high-pass spatial fi l tering throug h lateral inhibition.

Hubel and Wiesel found that at the cortical level there  are “ simple”

cells which respond to spots of light on the retina anywhere within

a long narrow rectangular area which is flanked by an inhibitory

surround. B oth “on” and “ of f” c ells were found , includin g c ells

which responded to light-dark borders. The cell responses were
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sharply selective to line or ientat ion and to t rans la t ional  displace-

ments of the s t imulus . In addition to simple c ells , complex cells

were discovered. These c ells appear to be located at the next

level of process ing.  In these c ells an appropr ia te l y oriented slit

st imulus gives a response of about the same amplitude rega rd less

of its position in the field . Pollen , et. al. , [ 83 1 have suggested ,

based on their experimental work , that the comp lex s t r u c t u r e  of the

striat e cortex may be per forming  two-dimensional  spatial decom-

positions of subdomains of the visual space . In a more recent

publication Pollen and Tay lor have shown that a Fourier  decompo-

sition of the spatial domain is consis tent  with Hubel and Wiesel’ s

findings and they have pointed out several  advantages  of a sys tem

which pe r fo rms  such a decomposit ion f 84 J.
The spectral  and spatial  decomposit ions of the visual field a r e

by no means separabl e processes . Indeed , DeValois and Pease

have demonstrated that whereas signif icant  spatial  p rocess ing  of

achromatic signals occurs at the re t inal  and LGB levels , comparable

chromatic processing appears to occur at the cor t ical  levels { 24
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APPENDIX B

SOME PSYCHOPHYSICAL CHA RACTERISTICS OF THE

H UMAN VISUA L SYSTEM

In A ppendix A we discussed the physiological face ts  of the

visual system. One of the major problems of physiological  studies

is that they usually involve invasive techniques.  That is , one in-

serts electrodes into an area of interest  or exposes neuronal  struc-

tur e in vivo , etc. This type of research is not commonly performed

on humans. Several animal species , f r o m  the Limulus (the horse-

shoe crab)  to different  varieties of monkey, have been used for

these purposes .  Although s imilar i t ies  iii the basic s t ruc 4 ure  of the

HVS and cer ta in  animal visual systems cer tainly exist (pa r t i cu la r l y

for  hig her primates) ,  it is difficult to ascer ta in  the detailed struc-

ture  and interconnectivi ty of the HVS. Moreover , knowledge of the

microst ructure of a system (biological or otherwise)  does not insure

knowledge of function. In this regards , the sum of the parts  is

quite often exceeded by the whole. These problems are  partially

resolved by psychophysical  techniques.

Boynton has defined visual psychophysics  as , “ an interdisci-

plinary area of scient ific investigation relating the reactions of

human observers  to physically measurab le  aspects of the visual
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environment in which they live” [85, p.8]. The key word is reac-

tions and the basic thrust  becomes that of stud ying the whole via

input-output relat ionships. The mechanisms an d / o r  organizat ion

which could produce these relat ionships may then be hypothesized.

In this manner the two fields of stud y -- physiology and psycho-

physics — complement one another.

B. 1. A Fundamental Result

A recent paper by Campbell and Green readily demonstrates

the “harmony ” between visual psychophysics and physiology [ 86 }.

In this work a laser was used to image in ter ference  f ringes  onto

the retina . By decreas ing the contrast  of the f r inges  with another

source of lig ht it was possible to determine the threshold of detec-

tion. This technique  produces a measure  of the resolving power of

the ret ina-brain comp lex without prior  modification by the opt ics  of

the eye. Measurements  were  then made of the visual  resolut ion of

“ external” grat ings  (viewed f rom the face of an oscilloscope) whose

intensity varied sinusoidall y with distanc e across  the gra t ings  and

which were imaged onto the ret ina by the optics of the eye. A

comparison of the resul ts  y ielded the modulation t r ans fe r  funct ion

of the eye. Effects of pupil size and focus were  measured ai~d

compared to the pe r fo rmance  of an ideal optical  system. The main

resul ts  were; the r e t i na-b ra in  complex has a hig h f r equency  cutoff
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and at every spatial frequency tested (2 to 40 cyc les/ degree)  the

optics decreased contras t  sensi t ivi ty.  The cha rac t e r i s t i c s  obtained

for the optics was not in complete agreement with that obtained by

Flamant in earlier work which did not use a psychophysical  para-

di gm [ 87 ]. Flamant us ed a “double pass ” technique in which a

grating was focused on the retina and the r eflected image analyzed.

This technique does not require a response f rom the subject , how-

ever the grating passes throug h the optics twice and the re f lec t ive

properties of the retina must be taken into account.  Campbell and

Gubisch then demonstrated that when the r ef lect ive p roper t i e s  of the

retina are taken into account the two experimental  techniques yield

consistent results [ 
68 ]. The modulation transfer functions of the

eye for  pupil d iameters  of 3mm and 6mm are  shown in F igure  B .  1.

In the previous paragraph we discussed some psychophysical

aspects of the dioptr ics  of the HVS . The main point is the d iopt r ic

system has been pararneterized well enough that one can control , to

an experimental deg ree  of accuracy ,  the st imulus imaged upon the

retina by a par t icu lar  experimental apparatus . This is a prime

precursor  of a valid psychophysical  experimental protocol.  With

this capability it is possible to study the r et i n a - b r a i n  complex in

detail. There are three  main areas  of interest  in these  studies

(not necessarily independent);  the spatial charac te r i s t i cs, the spec-

tral charac te r i s t ics , and the temporal  cha rac t e r i s t i c s . We will
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begin with a discussion of the spatial characteristics.

B. 2. Vis ual Act~Jty

One of the more important and misunderstood spatial charac-

teristics of the HVS is visual acuity. Visual acuity is simpl y the

capacity to discriminate the fine details of objects in the field of

view. Ther e are  two reaaon~ a trai t  so simply defined is mis-

understood; firstly, ther e are several “types ” of acui ty t asks and

secondly, for moat tasks there is no sing le mechanism responsible

for the response to the task. Acuity tasks may be grouped into the

four classes; detection , recognition, resolution , and loc ali z ation

ç 65 , p. 32 2].

The det ection task merely involves stating whether an object

is present in the visual field or not. This task has been used by

some as a measur e of the smallest objects which can be viewed by

che HVS . This is misleading since the results  of such paradigms

cannot logically be separated from the absolute  or d i f ferent ial  sen-

sitivity of the eye .

The task of recognit ion requires the subject  to locate, des-

cribe , or name the obj ect. The standard eye chart is an example

of such a task. A common clinical obj ect is the Landolt ring (a

ring with a gap). The observer is asked to indicate the location of

the gap. With high luminanc e backgrounds , ga ps corresponding to
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30 sec onds of arc can be recognized. Intensity discrimination is

not the limiting factor  in Landolt r ing acuity.  Other fac to r s , parti-

cularly foveal cone diameter  and spacing, a re  important mechanisms

affecting this type of test .

Resolution tasks require  the observer to respond to a separa-

tion between elements of a pattern.  The basic measur ement be-

comes the minimum distance (between obj ects) which can be dis-

criminated. Visual acuity is the reci procal of the angular separa-

tion b etween two elements of the test pat tern  when the two el ements

are barely resolved. A favored pattern for this type of test is a

grat ing of parallel light and dark stripes of equal widths. This

type of obj ect y ields limits of one minute  of arc.  The resolut ion

task is regarded as the most cr i t ical  aspect of visual acuity.  The

r esults of such t ests can be meaningfully related to the d i f f rac t ion

effects of the dioptrics and to the retinal mosaic.

The last type of acuity task , localization, depends on the

disc riminat ion of small displacements.  An example of such a task

is vernier acuity which is tested by using a broken , offset , straight

line. The object becomes that of f inding the minimum discernible

lateral disp lacement of the two halves of the line. This type of

task produces resul ts  which are  similar to the detect ion of sing le

black lines (2 to 4 seconds).

There are  several  fac tors  which affect  visual acuity.  The
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main ones are: (1) pupil size , (2) the dimensions of the retinal

mosaic , (3) object intensity, (4) stimulus duration , (5) adaptive

state of the photoreceptora , (6) eye movements , and (7) object con-

trast. The various tasks enumerated in pr evious paragraphs a re

affected different ly  by these factors.  The effects of pupil size were

discussed in Section A . 1. In Section A. 2 the limits imposed by the

retinal mosaic were  detailed. It was shown that these two fac tors

limit visual acuity to approximately 30 seconds of arc .

Thr ough personal observation, one can easily ascerta in  that

while la rge  objects are seen easily in dim light , small obj ects can

be seen clearly only when the li ghting is increased. This effect is

primarily a funct ion  of scotopic versus  photopic vision. Visual

acuity is poorest at scotopic intensity levels where parafoveal  or

peri pheral rod receptors  predominate.  For higher in tens i t i es

(which exceed cone receptor thresholds)  acuity rises steep ly. As

can be seen in F igure  B. 2 , as intensity increases acuity r ises  to

a maximum level which is maintained over a wide r ange  of high

intensities. As with other factors governing acu ity,  d i f f e r en t  data

and interpretations are found for the di f ferent  fo rms  of acuity tasks ,

however , the ba sic rela t ionship shown in Figure B. 2 is maintained.

The effects of exposure time or stirru lus duration have been

st udied by several resea rchers.  These studies indicate that for the

case of detection of bright disks on dark back grounds , acui ty is
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proportional to the square  root of exposure t ime. For br ig ht line

stimuli the proportional i ty  is d i rec t .  No simple re la t ionshi ps

appear for acuity versus time in the resolut ion tasks .

The state of adaptat ion of the photoreceptors  is an important

parameter in acuit y tasks , par t icu la rl y for  the studies in st imulus

duration. Craik found that in genera l , acui ty  is h ighes t  for condi-

tions of near equal adapting and test  luminances { 89 ]. Prolonged

dark adaptation is required to achieve scotop ic vision , which is

necessary  for viewing objects at low intensity levels. A cuity is

poor at these levels, but it is even poorer if adaptation is not com-

plete. At hi gh in tensi ty  levels the eye must  be given prolonged

adaptation to insure  the cones are  func t ion ing  most ef f ic ient ly.

The eyes are never motionless , thus the ret inal  image must

affect different receptors from one moment to the next. These

motions could have th ree  possible  effects  on visual  acuity: ( 1 )  they

may be so small acuity effects are  precluded , ( 2 )  they may cause

a “blurr ing ” of the image , or (3)  they may sharpen  the  image  by

“scanning” contours.  Experimental evidenc e ind ica tes  that eye

movement does not improve acuity and in some cases acui ty  is im-

paired by motion [ 88 , p. 1781. One of the more important  charac-

terist ics of the HVS was discovered during these types of investiga-

tions. U the motion of the eye is completely counteracted , i. e .,

the  image is stabi l ized on the ret ina , th en the obj ect fades out and

L 
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the field looks uniformly gray (17 , p. 405]. If the object is shifted

or the intensity chang ed , it will reappear temporarily.  A stabilized

image which is illuminated once or twice a second remains visible

( 90 , p. 382]., It can be concluded that receptors which are con-

tinuously excited by the same stimulus cease to t ransmit  information.

U the receptors are excited intermitt ently, as during eye movement ,

th en information is continuously transmitted. It appears then that

eye motion is important for the maintenance of visibility but has

littl e effect on actual resolution of objects if they are visible.

It has been found that for dark objects on bri ght backgrounds

acuity is maximal for highest contrast  between object and back-

gound [ 65 , p. 339]. Recent work with contrast gratings has pro-

duc ed a wealth of information and corresponding “theories ” of

vision. This area is discus sed in detail in the following section.

B.3. Spatial Frequency Response Functions

So far , we have emphasized the standard techniques of visual

acuity determination. In general , the spatial mani pulation r equired

to produc e a criter ion response confounds changes in the contrast

and apace parameters . For example, when two poi nts are  brou ght

together the two light distribution peaks become closer and the ab-

solute luminance of the trough increases. The latter effect reduces

the contrast of the image. This situation is even more pronounced
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when grat ings of higher and higher spatial f requencies  are  consid-

ered . The contrast gets smaller and smaller , eventual ly becoming

zero. One experiment which dissociates contras t  and spatial sepa-

ration is the inte r fe rence  f r inge  method of bypassing the d iopt r ics

and creating a 100% contrast f r i ng e  on the re t ina . Another  approach

is t o maintain a constant spatial pattern and vary  only the con t r a s t.

These par t icular  techniques are similar to the one d imens ional  fre-

quency analyses performed on linear electrical  networks.  The

system is subjected to a constant amp litud e input sinusoid and the

output amplitud e and phase variat ion s with  f r equency  a r e  de te rmined .

For l inear  systems (or systems operat ing in a l i nea r  range)  this

technique provides a complete character iza tion. . In the spac e do-

main , where  the input is periodical ly varying with d i s t anc e, the

system must be spatiall y invar ian t  as well as linear .  These two

r equirements cannot be over emphasized. The HVS does not sat isf y

either , how ever , in cer tain exp er imental procedures these conditions

may be approached . In addit ion , the resul ts  of the experiments can

be enl gihtening if one is cognizant of the limitations of the analysis;

and , prediction of the sys tem response  to an a r b i t r a ry  input is

possible. For these reasons  spatial  f requency analysis  of the human

visual  system has come into vogue rec ently [ 26 , p. 206).

The resu l t s  of these  exper iments  a r e  usual ly  conveyed in the

form of contras t  sensit ivity functions or curves.  These funct ions
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characterize the ability of the visual system to t ransfer  information

at various spatial f requencies  f rom stimulus input to output. Spatial

frequency is usually expressed in cycles/degree. This convention

r elates different  combinations of viewing distanc e and obj ect size to

the equivalent spatial frequency and hence , image size on the retina.

Contrast sensitivity is defined as the reciprocal of percent threshold

modulation (difference between peaks and troug hs) r equired fo r the

obse rver to distinguish the stimulus from a uniform field of equiva-

lent luminance.

One of these experiments, that of Campbell and Green [ 86 ] ,

quantified the dioptrics and it was discussed earl ier .  The resul ts

of this experiment indicate that as far  as the high f requency charac-

terist ics are  concerned, the dioptric s and the re t ina-bra in  complex

yield curves which are  of the same shape. The low-frequency

portion of typical contrast  sensitivity curves can only be at tr ibutable

to the re t ina-bra in  complex however. The combined high- and low -

pass charac te r i s t i cs  produce an overall band pass character is tic  with

a center frequency of approximately 5 cyc les /degree  (See F igure

B. 3). The hig h-frequency loss has been shown to be non-isotropic

( 91 1. Gilbert and Fender have verified that the curves remain

essentially unchanged for stabilized images [ 92 ]. The low fre-

quency portion of the MTF has been found to be a function of

luminanc e level ( 93 ]. The low-frequency attenuation also
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disappears with short exposure du ration s 194). As Westheime r has

point ed out , the high-frequency characterist ics can be related to

optical and anatomical limitat ions; however , the origin of the low-

frequency trai ts  I. less clear ( 88 , p. 182) .

8.4. Lateral Inhibition

In Section A. 4 we mentioned the experiments of Kuffler  which

demonstrat ed the existenc e of regions in the retina which have “on”

and “off” centers. These types of regions can produc e lateral in-

hibition which results in a low-frequency attenuation or high-pass

filtering. Patel has established this fact throug h Fourier calcula t ions

fibid] . The affects of adaptation and exposure duration on these

receptive regions have been shown to be consistent with the elimi-

nation of the low-frequency effects f 88 , pp. 182_ 1831. The simple

thesis that the low-frequency loss is due to lateral  inhibition is not

compatible with all observations however. For example, the results

of two increment-threshold experiments are  shown in Figure  B .4.

Note that in every case , as the diameter of the object increased the

threshold decreased. If lateral inhibition is occur ing in the HVS the

threshold should begin to increase at some crit ical  diameter.  If the

modulation threshold curves of Figur e B. 3 der ive their low-

frequency characterist ic shape from lateral inhibition in the retina ,

reconciliation with the curves of F igure  B. 4 is necessar y.
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Several rec ent experimenters have questioned the validity of

the low-frequency roll-off evid enced in most 1-IVS MTF’s [ 95 ] -

[ 97 ]. The contention is that for  the low-frequency g r a t i n g s  not

enough cycles a r e  within the visual field. Estevez and Cavonius

[ 98 1 maintain that experiments of Ho ekstra , McCann , and Savoy

[ 95 1 - [ 97 1 caused il lusory luminance gradients across  the stimu-

lus which resulted in a loss of sensi t ivi ty to mid-f requencies .  They

contend this mid-frequency loss has been misinterpreted as an ab-

senc e of low-fr equency attenuation. This part icular  i s sue  is still

unr esolved; how ever , there are other experiments which indicate

the presence of spatial interaction in the HVS.

If there is no spatial interaction within the HVS, then the per-

ceived brig htness at any point in the visual field would be a function

of the s t rength of excitation of the receptors  lying under the  ret inal

image of that spec ific point (the following discussion is based heavily

upon Cornsweet ’ s exc ellent presentat ion { 17 , Ch. XI , pp. 268-310]) .

Several perceptual  or psychop hysical paradi gms indicat e this is not

the case. A good examp le of this fact  is demons t ra ted  in F igu re

B.5. When the constant  intensity step grey scale is viewed , a

“scalloped” intensity pattern is perceived. Another common demon-

s t ra t ion is the Mach band pa t te rn  shown in F igu re  B. 6. In this

case a dark and a li ght s t r ipe appear to the l eft and rig ht , respec-

tively, of the c enter of the inteniity gradient. These illustrations
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a) A Unifo rm Grey Scale

b) The One-dimensional Profile

>‘

c) The Perceived One-dimensional Profile

Figure B.5. Illustration of Lateral Inhibition
Effects.
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a) A Mach Band Pattern

b) The One-dimensional Profile

c) The Perceived One-dimensional Profile

Figure P.6. The Mach Band Effect.
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indicate that perceived intensity is not a simple monotonic

function of intensity stimulus. If one postulates the presence of

lateral  inhibition within the HVS and plots the outputs of a row of

receptors being stimulated by a prof i le  similar to that in F igu re

B. 5b, an output similar to B. 5c is obtained { 17, pp. 303-304] .

Thus, th e hypothesis that lateral inhibition occurs within the HVS

is consistent  with these perceptual phenomena.

Although the previous paragraph indicates the presence of lateral

inhibitory effects  within the HVS. and henc e hig h-pass  f i l t e r s , the ex-

periments d iscussed do not quantif y the f i l te r  p a r a m e t e r s . The data

f rom the sine-wave grating experiments could provid e this parameter i -

zation if we assume the low-frequency port ions of curves  such as those

shown in Fi gure  B. 3 are  valid. A very s ign i f i can t  work in this  respec t

was performed by Mannos and Sakrison [ 7 ~. This work was pri-

marily concerned with the efficient coding of images (as we a re ) .

Several subjective evaluation experiments were performed with images

which were  preprocessed , cod ed , and pos tprocessed with a mod el of the

HVS which contained a band pass f i l ter .  The f i l ter  parameters  were

varied for each set of experiments. The f i l ter  funct ion  which gave the

best images (as jud ged subjectively) was very close to MTF curves

obtain ed by various r esea r che r s via grat i ng exper iment s f 7 ,

Figure 8, p. 535]. The pr imary di f fe renc e be ing the peak fr equenL y

occured at 8 cycles per degree rather than the usual 5 to 6 cycles per
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degree  as obtained psychophysical iy .  Thus , the low-f requency  loss

has been shown to be important  perceptual ly.

The preceding d i scussions  of the spatial  cha rac t e ri s t i c s  of the

HVS has shown them to be complex and not easil y quan t i f i ab l e . The

lack of he terogenei t y wi thin  the ret inal  s t r u ct u r e cannot be overem-

phasized. This cha rac t e ri s t i c  makes it extremel y d i f f icul t  to s epa-

rate  g lobal and local cha rac t er i s t i c s  of the system. Indeed , one of

the main objections to g ra ting  paradigms is that  they are  global in

nature. Many of the proper t ies  and t r a i t s  we have d iscussed  be-

come relevant when modeling the  HVS to pe r fo rm perceptua l , pa t t e rn

recognition , or scene anal ys is  t a sks .  For our purposes  ( sys tem

preprocessors )  the global c h a r a c t e ri s t i c s  are the more  per t inent

charac teri s t ic s .,

B. 5. ~ pectral  Proper t ies

Let us tu rn  now to a second major area , the spectral  charac-

ter is t ics  of the HVS. The absorpt ion spect ra  of the human visual

photopi gments were  shown in Figure  A. 5. These curves  were  ob-

tained throug h measurements  on rec eptors in excised human re t inas .

The measurement  technique  used is very depend ent on the  adapt ive

state of the r ecep to r s . Obviousl y, human re t inas  a re  obtained under

almost completel y uncontrolled  condi t ions  and t h e r ef o r e  the data is

not totally re l iable .  L iebman has concluded that  the  data can be no
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better than ±Z0-3Onm and that published density curves  cannot be

regarded as indicative of what exists in the living eye [ 99 , p. 515].

To gain some t rue  insight into the HVS spectral  response we must

once again turn to psychophysical experiments . F i rs t  we will def ine

some basic terms .

Colors have three main at t r ibutes;  hue , satu r a t ion , and lumino-

sity or brightness . Hue d enotes the color app earance  by name ,

e. g. ,  red , orange, etc. It is the aspect of color which changes

most strongly when the wavelength of the stimulus changes . Satu-

ration r e fe r s  to the purity of a hue or to which extent it appears  to

be diluted with white , grey , or black. The degree  to which colors

appear to emit more or less lig ht is r e fe r red  to as the luminos i ty

or brig htness of the color . The te rm luminosity is p re fe rab le  s ince

brig htness of color means “ colorfulness ” to many people. The

three  a t t r ibu tes  just  defined can be used to d e s c r i b e  any color .

It should be noted that these a re  all subjective terms . In this sense

color and wavelength of li ght a re  not synonymous.  Ind eed , several

different  combinations of wavelength may produc e the same subj ective

color description.  The visible band of e lectromagnet ic  radiation

wavel engths extends f rom the short ultra violet rays below 397nm

to the longer inf rared  heat waves above 723nm. The principle hues

are: red , 647-723nm; orange , 585-647nm; yellow , 570-585nm; green ,

52lnrn ; blue , 480nm; indigo , 424-455nrn ; and violet , 397-424nrn .
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From Figure  A. 5 it can be seen that the th ree  photoreceptor

curves  overlap. For example , a wavelength of 480nm would stimu-

late all three receptors . The diff icul ty  that this s i tuat ion g e n e r a t e s

in t rying to design a reliabl e psychophysical  paradigm is i l lus t ra ted

in Figure  B. 7. The curves of this fi gu re  a re  the result of a color

naming experiment.  The var ious  wavelengths  were  presented to the

subjects who responded with one of four  hues;  red , yellow , green ,

or blue. It can be seen that in the case of 58Onrn a var ia t ion of

only ±4 Onm can shift  the perceived response f r o m  green  to blue to

red. One way to el iminate some of the d i f f i cu l t i e s  encountered in

trying to measure  responses  of this  t r i ch romat i c  sys tem is to select

subjects  with color vision d iffic iencies.

Some observers  can only d i sc r imina te  between wavel engths in

res t r ic ted  reg ions of the spec t rum, and c o l o r - m a t c h i n g  func t ions

from them show that only two parameters  a re  needed to d e s c r i b e

their  color vision. The simp lest  reason for this defic iency would

be an absenc e of one of the t h r ee  types of cones and this has been

verified by using r efl ection dens i torne t ry .  These  dichromats  a r e  of

th ree  types: protanopes , who lack the 565nm cone; deuteranopes ,

who lack the 535nm cone; and the more r a r e  t r i tanopes , who do not

have the shor t -wavelength  cones. It is known that blue l i g h t - a b s o r b i ng

cones are  relat ively sparse  in the  foveola [ 100 , p. 209] . Thus ,

blue lig hts imaged prec ise ly in this a rea  a re  c onfused with  g r e e n s ,
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white , and yellows. This deficiency is compounded by the absorp-

tion of the shorter  wavelengths in the oc ular media caused by the

coloration of the cornea and the pigmentation contained in the ma-

cula. Because  of these  blue deficiencies in the foveola , microspec-

trophotometry techniques can be used to obtain essential ly sing le

photoreceptor curves  f rom deuteranopes and protanopes . Rushton

obtained curves which essentially matched those of the green-absor -

bing and red-absorbing curves in Figure  A. 5 [ 101 ]. Rushton also

went one step f u r t h e r  and obtained similar curves  f r o m  a normal

observer  by bleaching the red-absorb ing  cones with red li ght to ob-

tain the green-absorbing  curve  and bleaching with b lue-g reen  lig ht

to obtain the red-absorbing  curve. Fi gur e B. 8 contains th ree

curves obtained by Wald which have been widely accepted as the

absorption spectra of the th ree  pigments { 102 J . These curves  in-

clude the effects of the ocular media . When the d i f f e r e n c e  in

scaling is consider ed the curves  of Figures A. 5 and B. 8 are  qui te

similar. Thus , the t r i chromat ic  receptor  theory is supported by

both physiological  and psychophysical  data.

B. 6. Tr ichromat ic  and Opponent Color Theor i e s

The t r i ch romatic  theory of color vision was f i r s t  pos tula ted

by an English chemist  named Palmer in 1777 [ 103 , p. 56] .

Twenty- f ive  years  la ter  Young proposed the same theory  of color
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vision. H elmholtz broug ht Young ’s theory of “color sensations”

forward in his Physiological  Optics published in 1860. Because of

this , the t r ichromatic  theory is often re fe r red  to as the Young-

Helrnholtz theory of color vision. There is another theory for

color vision which was proposed by Hering in 1820 [ 104 , p. 731.
the so-called opponent theory of color vision. Hering was im-

pressed by the existenc e of the f ive  psychological sensations; red ,

yellow, green , blue, and white (recall  the four hue curves of Figure

8.7). In addition , the four basic hues .eemed to operate in oppo-

sing pairs. Red and green seem to oppose in that t he re  is no

reddish-green color.  Similarl y, there  are  no yellowish-blues.

Her ing also assumed there  must be a third black-whi te  mechanism.

This theory explained the existence of the f ive basic psychological

pr imaries  and the complementar i ty  of negat ive a f t e r - images .  For

example, the a f t e r - image  of a brig ht red stimulus seen against a

white surface is green.

The two basic theories of vision , t r ichromat ic  and opponent ,

have generated much debat e in the past 100 years .  It now appears

that both theories a re  correct .  The experimental work of DeValois

( 76 ] has confirmed the existence of opponent cells in the LGB .

Recent conjectures  on the interconnectivi ty of the receptors  and

LGB c ell s demonstrat e the compatibility of the two theories [ 90,

p. 189], 
~ 

104 , p. 76 1, and [ 105 ].
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B. 7. Luminosity and Color Constancy

So far , we have conside red only the spectral  aspects of per-

ceiv ed colors . The effects of luminanc e and contrast  should also

be consid ered when dealing with color vision. As the luminance of

a colored stimulus is increased the apparent hue may undergo  a

change. Increas ing luminance will shift reds and yel low-greens

toward the yellows while b lue-greens  become bluer .  This is the

Bezold-Brucke effect , and it can be explained by using the opponent

color theory. The red-green  system simply has a lower threshold

than the blue-yellow system. The appearance  of a color is also

altered by contrast  phenomena.

If a constant luminanc e colored patch is viewed agains t  a

variable  luminance white back ground , its appearance may chang e

dramatically with changes in the back ground luminance.  For exam-

pie, an orang e obj ect will become brown with a hi gh luminance

back ground or a pastel orange with a low luminance surround . It

is believed that la teral  inhibition produces this effect  and other

similar effects [ 17 , pp. 365-383] . If this is indeed the case, then

Mach band s should occur in gradients of hue, Several r e sea rche r s

have investigated this phenomena and t h e r e  is considerable  disagree-

ment as to whether “ colored” Mach bands do indeed occur.  Van

Der Horst and Bouman maintain that they do not and hence , spatial

inhibitory influences a re  lacking in the color mediating Lhannels

208

- _~~~~~~ ----. _~~. _ _ ---. - . -—. _ . .-



- —-_ - - . - —_—_ _ ----. - _ 
___ - _ _ _ _ _  _ _ _ _

[ 106 ]. On the other hand a recent paper by Gr een and Fas t de-

inonstrates that Mach bands similar to those which occur in achro-

matic luminanc e gradients  also occur in constant  hue luminance

gradients [ 107 ]. However , the “Mach type” bands observed in hue

gradients were  not the type as predicted by lateral  inhibition at the

receptor level. -

Spatial f requency contrast  gra t ings  of d i f fe ren t  hues have also

been used in studying color vision [ 108 ]. Results of these studies

verif y the r educed sensitivity of the blue receptors  (including the

ocular media) and their scarcity. This later factor is evidenced by

the r eduction in resolution.  The blue channel was found to peak at

approximately 2 c y c l e s/ d e g r e e  r a t h e r  than 8 c y c l e s / d e g r e e  for  red

and green. In addition , the maximum frequency was b etween 10

and 20 cyc les /degree, which represents  an acuity d& ’crea se  by a

factor of 6. Of perhaps more importanc e is the fac t  that Green

obtained low-frequency losses in all of his data , therefore  implying

that la teral  inhibition is present .  It becomes apparent  that severa l

spatial and spectral aspects of the HVS are inter-related and it may

be some time before the t rue s t ructure  and nature  of the system is

known. To compound the problem these factors are also related

to the temporal characterist ics of the HVS.
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B. 8. Some Tempora l  Cons ide rat ions

Since we are  pr imar i ly concerned with “ still” imagery , we will

not discuss in detail the temporal aspects of the visual system.

One of the most studied temporal charac ter i s t ics  is the response to

flickering stimuli. At a g iven lig ht intensi ty,  a field is al ternated

between light and dark with increasing fr equency until the fl icker is

no longer detected. That point is defined as the cri t ical  f l icker

frequency (CFF) for the particular stimulus conditions. One can

obtain MTF’ s of the temporal system by vary ing  the intensit y of a

fi eld sinusoidally. The temporal  MTF has been measured for a

wide variety of stimulus and adaptation conditions [ 109 ) - [ 112

At any mean level of luminanc e the system is maximally sensi t ive

to f requencies  between 5 and 25Hz (fl icker f r e e  T V . is scanned at

30Hz). Increased luminance shifts  the hig h- and mid-f requency

response to higher f requencies .  The low-frequency portion of the

curves is relatively insensi t ive to mean intensity changes and again ,

lateral inhibition may be their deter minant [ 17 , pp. 410-416) .

Some spatio-ternporal and spectral-temporal effects  a re  of more

interest.

Tynon and Sekuler have found that sinusoidal grat ings appear

to be of higher spatial f requency wh en briefly flashed rather than

presented for longer durations [ 113 ]. Other studies have shown

that the contrast  level for perceived f l icker  and that for which
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the spatial s t r u c t u r e  of gra t ings  becomes apparent occurs  at two

d i f fe ren t  threshold s [ ll4 1~ These result s have led some to posit that

two temporal channels , one sustained and one t ransient  in na tu re ,

exist in the HVS [ 114 ] and [ 115 ]. This proposit ion has been

verif ied for the in terconnect ions  between the cat’ s retina and LGB

[ 116 ]. The implications of these results  are  not clear at this t ime .

One of the more startling temporal phenomena is that of in-

duced color. Colors may be perceived when a variety of s t imulus

pat terns a re  illuminated intermittently with white li ght [ 90 , pp.

205-210] ,  { 104 , p. 152 1, and [ 117 , pp. 307-308]. These colors

a re  commonly re fe r red  to as Fechner colors and they a r e  usual ly

demonstra ted with a B enham ’s disc or top. The disc is rotated

at about 5 to 10 rps and three colored rings of blue , g reen , and

red appear. Such a disc is shown in Figur e B. 9. When rotat ed

clockwise the lines denoted A appear blueish and those at C a r e

reddish .  A counterclockwise rotation interchanges  the two colors .

It has been suggested that the complex f l icker ing pat terns  set up

by the rotating disc produc e t ime-varying activity in the optic nerve

that  is similar  to the output of the photorec eptors when s t imulated

by colored lights [ 90 , p. 207] . Several at tempts have been made

to produc e subject ive  colors with stat ionary f l icker ing lig hts.

These experiments have been moderately success fu l .

Young has proposed the color channels of the HVS are  sensi-
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Figure B .9  Benham’s Disc 
-~
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tive to stimulus temporal phase information [ 118 J. He has tested

this hypothesis by stimulating the eye with electrical Impulses which

were compatible with B enham’s disc signals convolved with the

temporal Impulse response of the HVS. The results indicate the

relative phase relationships of temporal signals is the most irn-

portant stimulus variable. The question of the exact physiological

natur e of the hypothesized phase signals , or the manner in which

they are encoded and decoded to produc e color sensations , r emains

unanswered however .
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